Curve detail

Definition

Name w-512-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0xfe14ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 512
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0xfe14fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
Param $b$ 0x185ed

Characteristics

Order 0xfe14ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff638a8d792ee750298064aaf0b8498e61df3d3995064ed73b939628f17e98fdc9
Cofactor 0x1
$j$-invariant 0x933e68652c792de1b06fd603ed749716736c131dad92f7ec405100a1d547dd29af0d63806b170386a81ef1fcf76e63680bb1218d047f36a46c114890a763489e
Trace $t$ 0x9c757286d118afd67f9b550f47b6719e20c2c66af9b128c46c69d70e81670237

Traits

$\text{cofactor}()$
order 0xfe14ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff638a8d792ee750298064aaf0b8498e61df3d3995064ed73b939628f17e98fdc9
cofactor 0x1
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0xfe150000000000000000000000000000000000000000000000000000000000009c757286d118afd67f9b550f47b6719e20c2c66af9b128c46c69d70e81670237
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfc2dadb8fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc674b5976314d9017b2d26357fb17134cfe3508899c2277d7e305bb191861c1d342b69504cd2b9a1c932aaabae6f77a0c790f8c28c03902c3a78399b23646e7d5
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x5', '0x11', '0xbf', '0x1a99e4bd', '0x5a5d83d5cc7041b', '0x48d1d137077cb6392131d18002b805993d2e0123ad4bf755c80145d191ef3f069b804baee40f844f6268aeaea5df35ecdd8f6bf']
(-)largest_factor_bitlen 0x19b
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x2', '0x5', '0x5', '0x7', '0xd3706b9', '0xfaf3baad4d', '0x1584d96391fde2190ee374285157f4deb68917a65ab45dc95d4640fa92a9afc61a1468147a5c4c622fe98f6bc5128b406ca501ca4b2925']
(+)largest_factor_bitlen 0x1b5
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x27b347ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe78da61aef5424867c0fbab59ccb7e3f4ae190ff48fc51a14f0f7665bbc7e7a77']
(+)largest_factor_bitlen 0x202
(-)factorization ['0x2', '0x2', '0x3', '0xd', '0x4f', '0x971', '0x111f01817df23a65', '0x29cb01470245e5c66b487b3558029eb681a5a9a1ebef16431285b2cbde948234deeac4282339cf2716a9fa230c4f748f144608518ed7']
(-)largest_factor_bitlen 0x1ae
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x2', '0x5', '0xb', '0x13', '0x17', '0x728f', '0x1da0d', '0x5cf4887', '0xc18745aa7', '0x29a43b88a54fe40e09ab04b67207cdd5c775606e2413aef4f1ee2e172b8c3db06adaa4d110b7543d72c153d574caaec7329bf7']
(-)largest_factor_bitlen 0x196
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x3', '0x59', '0x119', '0x3653', '0x8d29', '0x3efea0c2b49', '0x504aea8613add843d71f2fd192148d9c1a714b49eb659fa00bfaa14838d86b50589d2a6712b4b90ce1e7d589f2f1dc7843e4897af35']
(-)largest_factor_bitlen 0x1ab
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x28
full 0x28
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x54
full 0x54
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x30
full 0x30
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x9c757286d118afd67f9b550f47b6719e20c2c66af9b128c46c69d70e81670237
factorization ['0x3', '0x7', '0x21d', '0xa34389', '0xa2b63bad7', '0x68d1df4146b', '0x153de4ce974c45071df6969a93a1c2f62a2b']
$\text{conductor}(deg=3)$
ratio_sqrt 0x9e75a689ceb26fe84d2d9ca804e8ecb301caf77663dd88281cfa44e6e79e3e2cbd496afb32d465e36cd55545190885f386f073d73fc6fd3c587c664dc9b9182e
factorization NO DATA (timed out)
$\text{conductor}(deg=4)$
ratio_sqrt 0xfc21c16916a1b83eeb7caa7f75d4780f1befda5679f672820000ae04bfcb6b56fc97df26d21310008d75487e697cf2f4b57d1abe8585c12a755a501f5e948fa2a08d10a217390b048d188c3c60e5291d159b9b687eee747fb95b2267300f8bab
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x6', '0x2']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x7
full 0x7
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x14
full 0x14
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x9c757286d118afd67f9b550f47b6719e20c2c66af9b128c46c69d70e81670237
trace_factorization ['0x3', '0x7', '0x21d', '0xa34389', '0xa2b63bad7', '0x68d1df4146b', '0x153de4ce974c45071df6969a93a1c2f62a2b']
number_of_factors 0x7
$\text{trace_factorization}(deg=2)$
trace 0x9c757286d118afd67f9b550f47b6719e20c2c66af9b128c46c69d70e81670237
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x110
expected 0x100
ratio 0.94118
$\text{hamming_x}(weight=2)$
x_coord_count 0xfed4
expected 0xff80
ratio 1.00264
$\text{hamming_x}(weight=3)$
x_coord_count 0xa9a4ef
expected 0xa9ab00
ratio 1.00014
$\text{square_4p1}()$
p NO DATA (timed out)
order NO DATA (timed out)
$\text{pow_distance}()$
distance 0x1eb0000000000000000000000000000000000000000000000000000000000009c757286d118afd67f9b550f47b6719e20c2c66af9b128c46c69d70e81670237
ratio 132.47454
distance 32 0x9
distance 64 0x9
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x92a5118559de236ec520433c7414ec8aec6ab14e84446abfdbf114bc04b5b345571c7d0b1d5a1050a96f81daf33af96927799d3ddd5c05ccd5d9fc557415765d
$\text{brainpool_overlap}()$
o 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
$\text{weierstrass}()$
a 0xfe14fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
b 0x185ed