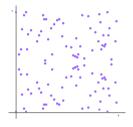
DiSSECT: Distinguisher of Standard & Simulated Elliptic Curves via Traits

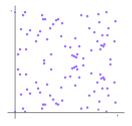
<u>Vladimir Sedlacek</u>^{1,2} Vojtech Suchanek¹ Antonin Dufka¹ Marek Sys ¹ Vashek Matyas¹


¹CRoCS, Masaryk University, Brno, Czech Republic

²Université de Picardie Jules Verne, Amiens, France

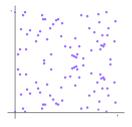
Africacrypt 2022, July 20

$$y^2 = x^3 + ax + b$$
 in \mathbb{F}_p


$$k \cdot P := \underbrace{P + \cdots + P}_{k}$$

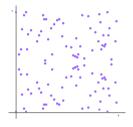
• ECC based on the discrete logarithm problem (ECDLP): Given $P, k \cdot P$, find k

$$y^2 = x^3 + ax + b$$
 in \mathbb{F}_p


$$k \cdot P := \underbrace{P + \cdots + P}_{k}$$

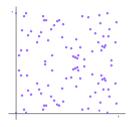
- ECC based on the discrete logarithm problem (ECDLP): Given $P, k \cdot P$, find k
- Protocols: ECDH, ECDSA, EdDSA

$$y^2 = x^3 + ax + b$$
 in \mathbb{F}_p


$$k \cdot P := \underbrace{P + \cdots + P}_{k}$$

- ECC based on the discrete logarithm problem (ECDLP): Given $P, k \cdot P$, find k
- Protocols: ECDH, ECDSA, EdDSA
- In practice: standard curves

$$y^2 = x^3 + ax + b$$
 in \mathbb{F}_p


$$k \cdot P := \underbrace{P + \cdots + P}_{k}$$

- ECC based on the discrete logarithm problem (ECDLP): Given $P, k \cdot P$, find k
- Protocols: ECDH, ECDSA, EdDSA
- In practice: standard curves
 - Who chooses them and how?

$$y^2 = x^3 + ax + b$$
 in \mathbb{F}_p

$$k \cdot P := \underbrace{P + \cdots + P}_{k}$$

- ECC based on the discrete logarithm problem (ECDLP): Given $P, k \cdot P$, find k
- Protocols: ECDH, ECDSA, EdDSA
- In practice: standard curves
 - Who chooses them and how?
 - How to measure their real security?

Known attacks

Unknown attacks

• Backdoors

Based on known and published weaknesses

Based on known and published weaknesses

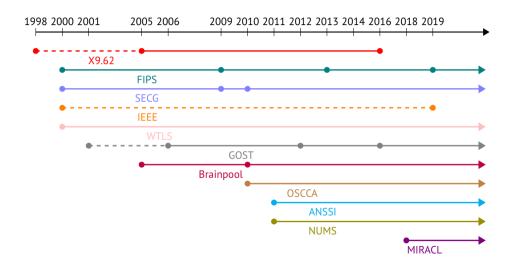
Pohlig-Hellman

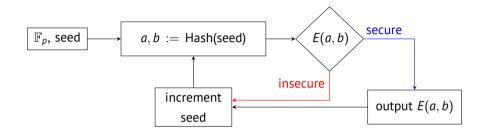
- Based on known and published weaknesses
 - Pohlig-Hellman
 - MOV and SASS attack

- Based on known and published weaknesses
 - Pohlig-Hellman
 - MOV and SASS attack
 - Small CM-discriminant

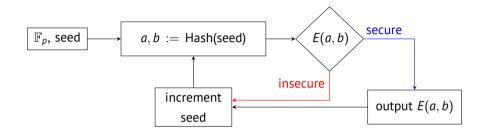
- Based on known and published weaknesses
 - Pohlig-Hellman
 - MOV and SASS attack
 - Small CM-discriminant
- All of these depend just on *p* and the group order

- Based on known and published weaknesses
 - Pohlig-Hellman
 - MOV and SASS attack
 - Small CM-discriminant
- All of these depend just on *p* and the group order
- Fairly easy to avoid

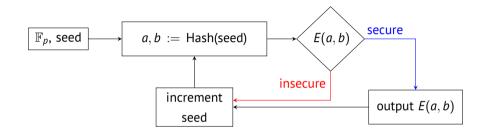

- Based on known and published weaknesses
 - Pohlig-Hellman
 - MOV and SASS attack
 - Small CM-discriminant
- All of these depend just on *p* and the group order
- Fairly easy to avoid
- safecurves.cr.yp.to

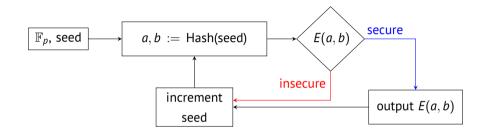

Known attacks

Unknown attacks


Backdoors

Timeline of standard curves




verifiably pseudorandom: X9.62, SEC, Brainpool

- verifiably pseudorandom: X9.62, SEC, Brainpool
- rigid: Curve25519, NUMS, MIRACL

- verifiably pseudorandom: X9.62, SEC, Brainpool
- rigid: Curve25519, NUMS, MIRACL
- special/pairing-friendly: Bitcoin curve, BLS, BN, MNT

- verifiably pseudorandom: X9.62, SEC, Brainpool
- rigid: Curve25519, NUMS, MIRACL
- special/pairing-friendly: Bitcoin curve, BLS, BN, MNT
- unknown/ambiguous origin: ANSSI FRP256v1, OSCCA SM2, GOST R

• Known attacks

Unknown attacks

Backdoors

• Attacks that are known only to some party

- Attacks that are known only to some party
- Incidents with backdoors in standards

- Attacks that are known only to some party
- Incidents with backdoors in standards
 - Clipper chip

- Attacks that are known only to some party
- Incidents with backdoors in standards
 - Clipper chip
 - Dual EC pseudorandom bit generator

- Attacks that are known only to some party
- Incidents with backdoors in standards
 - Clipper chip
 - Dual EC pseudorandom bit generator
- Usual suspect: P-256 et al. (NIST + NSA)

Backdoors

- Attacks that are known only to some party
- Incidents with backdoors in standards
 - Clipper chip
 - Dual EC pseudorandom bit generator
- Usual suspect: P-256 et al. (NIST + NSA)

•
$$y^2 = x^3 - 3x + b$$

Backdoors

- Attacks that are known only to some party
- Incidents with backdoors in standards
 - Clipper chip
 - Dual EC pseudorandom bit generator
- Usual suspect: P-256 et al. (NIST + NSA)

•
$$y^2 = x^3 - 3x + b$$

• $b = \sqrt{-27/\text{Hash(seed)}}$

- Attacks that are known only to some party
- Incidents with backdoors in standards
 - Clipper chip
 - Dual EC pseudorandom bit generator
- Usual suspect: P-256 et al. (NIST + NSA)

•
$$y^2 = x^3 - 3x + b$$

- $b = \sqrt{-27/\text{Hash(seed)}}$
- seed = c49d360886e704936a6678e1139d26b7819f7e90

- Attacks that are known only to some party
- Incidents with backdoors in standards
 - Clipper chip
 - Dual EC pseudorandom bit generator
- Usual suspect: P-256 et al. (NIST + NSA)

•
$$y^2 = x^3 - 3x + b$$

- $b = \sqrt{-27/\text{Hash(seed)}}$
- seed = c49d360886e704936a6678e1139d26b7819f7e90
- Ambiguities in ECC standards

- Attacks that are known only to some party
- Incidents with backdoors in standards
 - Clipper chip
 - Dual EC pseudorandom bit generator
- Usual suspect: P-256 et al. (NIST + NSA)

•
$$y^2 = x^3 - 3x + b$$

- $b = \sqrt{-27/\text{Hash(seed)}}$
- seed = c49d360886e704936a6678e1139d26b7819f7e90
- Ambiguities in ECC standards
- Transparency is the key

● Known attacks ← safecurves.cr.yp.to

● Unknown attacks ← DiSSECT

● Known attacks ← safecurves.cr.yp.to

● Unknown attacks ← DiSSECT

● Backdoors ← DiSSECT

DiSSECT: simulations

Idea:

• compile a database of standard curves

DiSSECT: simulations

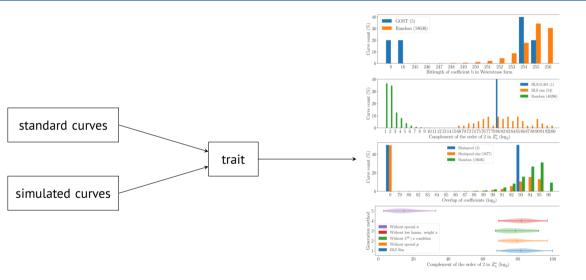
Idea:

- compile a database of standard curves
- compare standard curves to simulated ones

DiSSECT: simulations

Idea:

- compile a database of standard curves
- compare standard curves to simulated ones
- look for weaknesses via statistical deviations


Idea:

- compile a database of standard curves
- compare standard curves to simulated ones
- look for weaknesses via statistical deviations

	256 bits	224 bits	192 bits	160 bits	128 bits
X9.62 _{sim}	18 500	22 200	18 800	27 800	36 100
Brainpool _{sim}	1 700	2 400	2 700	3 200	0
NUMS sim	100	100	200	300	0
Curve25519 _{sim}	100	0	400	300	0
Random	18 700	21 200	24 800	29 600	37 300

Simulation counts (>260k curves)

DiSSECT: high level

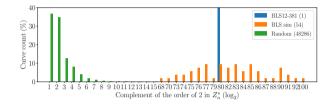
DiSSECT: traits

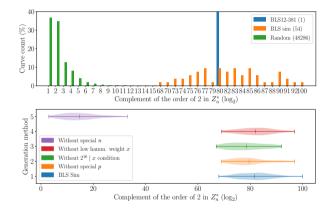
degrees cm-field coefficients kn_factorization degree graph twist nontrivial isogeny subgroup cofactor weight full field factorization containing **ratio** coordinate discriminant orderembedding conductor uplement guadratic small torsion extensions twist_order complement prime CUIVE extension trace maximal torsion_extension frobenius polynomial relative bitlength lower volcano prime-subgroup basefield conductors weierstrass upper class number

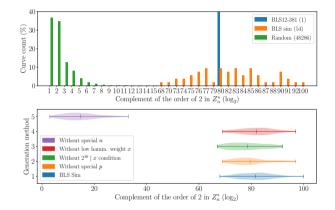
• Basic: manual eyeballing

- Basic: manual eyeballing
- Advanced: automated outlier detection

- Basic: manual eyeballing
- Advanced: automated outlier detection
 - Local: find outliers w.r.t. a single trait

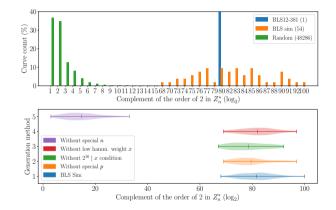

- Basic: manual eyeballing
- Advanced: automated outlier detection
 - Local: find outliers w.r.t. a single trait
 - Global: find outliers w.r.t. several traits at once


- Basic: manual eyeballing
- Advanced: automated outlier detection
 - Local: find outliers w.r.t. a single trait
 - Global: find outliers w.r.t. several traits at once
- Some known properties inspired traits and suggest special treatment

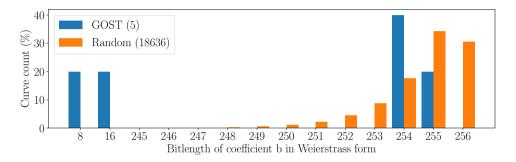

- Basic: manual eyeballing
- Advanced: automated outlier detection
 - Local: find outliers w.r.t. a single trait
 - Global: find outliers w.r.t. several traits at once
- Some known properties inspired traits and suggest special treatment
 - secp256k1 has $x(\frac{1}{2}G) < 2^{166} \dots$ in fact, identical for secp224k1

- Basic: manual eyeballing
- Advanced: automated outlier detection
 - Local: find outliers w.r.t. a single trait
 - Global: find outliers w.r.t. several traits at once
- Some known properties inspired traits and suggest special treatment
 - secp256k1 has $x(\frac{1}{2}G) < 2^{166} \dots$ in fact, identical for secp224k1
 - Brainpool curves often have hex coefficients overlap

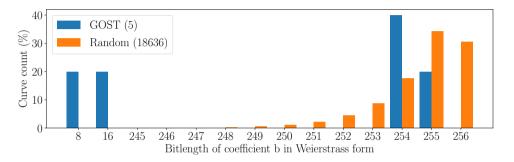
- Basic: manual eyeballing
- Advanced: automated outlier detection
 - Local: find outliers w.r.t. a single trait
 - Global: find outliers w.r.t. several traits at once
- Some known properties inspired traits and suggest special treatment
 - secp256k1 has $x(\frac{1}{2}G) < 2^{166} \dots$ in fact, identical for secp224k1
 - Brainpool curves often have hex coefficients overlap
- Comparison across standards often very valuable



• Finding: *ord*_n(2) is small


16/19

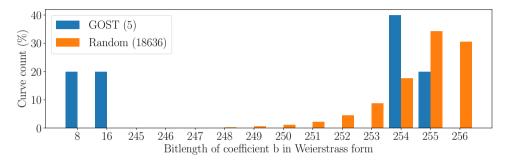
• Finding: *ord*_n(2) is small


• Root cause: $\varphi(n) = x^2(x+1)(x-1)$ has no large factor

DiSSECT: GOST findings

• Finding 1: CryptoPro-A-ParamSet, CryptoPro-C-ParamSet have small b coeffs

DiSSECT: GOST findings



• Finding 1: CryptoPro-A-ParamSet, CryptoPro-C-ParamSet have small b coeffs

• Finding 2: CryptoPro-B-ParamSet has CM disc -619

17/19

DiSSECT: GOST findings

• Finding 1: CryptoPro-A-ParamSet, CryptoPro-C-ParamSet have small b coeffs

- Finding 2: CryptoPro-B-ParamSet has CM disc -619
- Conclusion: these were generated in a special way

• Systematic analysis required to trust non-transparent curves

- Systematic analysis required to trust non-transparent curves
- DiSSECT: open source DB + analysis interface + visualisation

- Systematic analysis required to trust non-transparent curves
- DiSSECT: open source DB + analysis interface + visualisation
- Found strange GOST and BLS properties

- Systematic analysis required to trust non-transparent curves
- DiSSECT: open source DB + analysis interface + visualisation
- Found strange GOST and BLS properties
- Anyone can add a:

- Systematic analysis required to trust non-transparent curves
- DiSSECT: open source DB + analysis interface + visualisation
- Found strange GOST and BLS properties
- Anyone can add a:
 - curve to be analyzed

- Systematic analysis required to trust non-transparent curves
- DiSSECT: open source DB + analysis interface + visualisation
- Found strange GOST and BLS properties
- Anyone can add a:
 - curve to be analyzed
 - curve simulation method

- Systematic analysis required to trust non-transparent curves
- DiSSECT: open source DB + analysis interface + visualisation
- Found strange GOST and BLS properties
- Anyone can add a:
 - curve to be analyzed
 - curve simulation method
 - trait to be applied to all curves

- Systematic analysis required to trust non-transparent curves
- DiSSECT: open source DB + analysis interface + visualisation
- Found strange GOST and BLS properties
- Anyone can add a:
 - curve to be analyzed
 - curve simulation method
 - trait to be applied to all curves
- Let us leverage the large scale!

- Systematic analysis required to trust non-transparent curves
- DiSSECT: open source DB + analysis interface + visualisation
- Found strange GOST and BLS properties
- Anyone can add a:
 - curve to be analyzed
 - curve simulation method
 - trait to be applied to all curves
- Let us leverage the large scale!
- WIP: pairing-friendly curves, clustering, entropy measurements,...

18/19

Something ends, something begins

Questions and collaboration welcome!

Check out our tool and results at: https://dissect.crocs.fi.muni.cz/

Centre for Research on Cryptography and Security

V. Sedlacek, V. Suchanek, A. Dufka, M. Sys, V. Matyas

