Curve detail

Definition

Name w-511-mers
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1f)
Field bits 511
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1c
Param $b$ 0x879da

Characteristics

Order 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8dbefa3f5ed9d839a2d4fe6ff516e87fa8d3e656a0f99fa1f0105f73b3b9d19f
Cofactor 0x1
$j$-invariant 0x6ebb653b932f9624f3cb17bda956ae317e2d850ae2d7662ead52e87ba272a41f060ce3279d0215c60fa2ab203be316c8e63508856621e690c00017fe748859c2
Trace $t$ 0x724105c0a12627c65d2b01900ae91780572c19a95f06605e0fefa08c4c462c81

Traits

$\text{cofactor}()$
order 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8dbefa3f5ed9d839a2d4fe6ff516e87fa8d3e656a0f99fa1f0105f73b3b9d19f
cofactor 0x1
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0x8000000000000000000000000000000000000000000000000000000000000000724105c0a12627c65d2b01900ae91780572c19a95f06605e0fefa08c4c462aa1
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1e32fdf9a37b78e80a79f00a21d9b0e69cb4c2d06cd7974fcdac751309826c95dd42eafa496554fbdc2420d8d2d55040687840b1fe148bbf3571f9aac0f64c2485
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x3', '0x3', '0x97b425ed097b425ed097b425ed097b425ed097b425ed097b425ed097b425ed08f3d8dcbce23197f875225cf677cf4c715fcbbba90aa31c024bed7a9c1760f87']
(-)largest_factor_bitlen 0x1fc
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x2', '0x2', '0x5', '0x151', '0x37f7', '0x3f00dd41', '0x10f16d152b5c2e4ddebe085630bb00c81d6b0121acd68638a719eda493819d14ee6004791dfb29033bc82066162d2e8403686e89f4dcd024e3d']
(-)largest_factor_bitlen 0x1c9
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x2', '0x25', '0x45306eb3e45306eb3e45306eb3e45306eb3e45306eb3e45306eb3e45306eb3e41544a2f1d267ea8004fd829d61e2de8a31bea60550183a9cb91d9b6122e0fbb']
(+)largest_factor_bitlen 0x1fb
(-)factorization ['0x2', '0x3', '0x2ab', '0x7335f1', '0x58d655f7de146df2bdbd1b913e4973ede116962df253fecd3194018be5e27e318f61760cb883373c943171dd39ad8fa561eb4a950a044c9490e4c3dd']
(-)largest_factor_bitlen 0x1df
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x3', '0x3', '0x5', '0x5', '0x5', '0x60d', '0x2955b', '0x118567', '0x255205', '0x2ffd5136461', '0xd9ec86bbc4bb586cabd8d4f9136ecee372318407cb27f1738d58e85e7b3a3f32310f0e176e89e7b8d395ba5f20c406bf5d']
(+)largest_factor_bitlen 0x188
(-)factorization ['0x2', '0x2', '0x2', '0x61f1', '0x15bb9', '0x10d03b', '0x17dbe7', '0x2d78d3', '0x30654f40d0e2fabf6df86df2012db798a4085a3b781964d334036eea7f06074e5a5739331b609f96159d45e1bc82406e00c0ae575']
(-)largest_factor_bitlen 0x1a2
$\text{kn_factorization}(k=8)$
(+)factorization ['0x22d', '0x3805', '0x2705c7b', '0x8debcfc3', '0xbe08437dafdabf', '0x2771e87611b3fd71', '0x11812ebc276edd419', '0x31a7e6ed82b11e5902774945e991db31ecfe0b0a59593a77a9359ae3bd75315f']
(+)largest_factor_bitlen 0xfe
(-)factorization ['0x3', '0x5', '0x7', '0xb', '0x35', '0x4484807cb931e3091ccf4696714e7dda40e1174a19bc64e2d8efa4eee43a3adb34d652a8e41f61ceb34abfe93a2a36c65eae0acfce00ed7943da7a65c9f29']
(-)largest_factor_bitlen 0x1f3
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x3
full 0x7
relative 0x2
$\text{torsion_extension}(l=11)$
least 0xa
full 0xa
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x10
full 0x10
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x724105c0a12627c65d2b01900ae91780572c19a95f06605e0fefa08c4c462c81
factorization ['0x3', '0xd', '0x36bb', '0x8174f33', '0x1b190364c4ccf66fb29fbffbaafb4439ed78ef9d641d2e725d557']
$\text{conductor}(deg=3)$
ratio_sqrt 0x4d02065c848717f5860ff5de264f19634b3d2f932868b032538aecf67d936a22bd1505b69aab0423dbdf272d2aafbf9787bf4e01eb7440ca8e06553f09b7651e
factorization NO DATA (timed out)
$\text{conductor}(deg=4)$
ratio_sqrt 0x5b7ef8f41d333719be0dbc124cb794eeec34eac5c4d8a4fa8ba62fbd5b70917cb107a2134ac0a111ad7db98dc14fdce93da013217ca6c3aa8f300dde65f4c4d5ce85db566f990917bbec44d20f64f16bfd583816af69537cd53a4966a9257dbd
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement None
complement_bit_length None
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x7
relative 0x7
$\text{isogeny_extension}(l=11)$
least 0x1
full 0x5
relative 0x5
$\text{isogeny_extension}(l=13)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x8
relative 0x8
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x12
relative 0x12
$\text{trace_factorization}(deg=1)$
trace 0x724105c0a12627c65d2b01900ae91780572c19a95f06605e0fefa08c4c462c81
trace_factorization ['0x3', '0xd', '0x36bb', '0x8174f33', '0x1b190364c4ccf66fb29fbffbaafb4439ed78ef9d641d2e725d557']
number_of_factors 0x5
$\text{trace_factorization}(deg=2)$
trace 0x724105c0a12627c65d2b01900ae91780572c19a95f06605e0fefa08c4c462c81
trace_factorization ['0x9203acf43142e19', '0x1676e3a47c169529d2799106a50fff36c838c943c8fd940e26c3711510ad85b53ac7836e06b05c4985f38f1c67aea2edde6185c3e7edf87ac5']
number_of_factors 0x2
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0xde
expected 0xff
ratio 1.14865
$\text{hamming_x}(weight=2)$
x_coord_count 0xfec9
expected 0xfe80
ratio 0.99888
$\text{hamming_x}(weight=3)$
x_coord_count 0xa8b3f1
expected 0xa8ac7f
ratio 0.99983
$\text{square_4p1}()$
p NO DATA (timed out)
order NO DATA (timed out)
$\text{pow_distance}()$
distance 0x724105c0a12627c65d2b01900ae91780572c19a95f06605e0fefa08c4c462e61
ratio 1.2972314489995918e+77
distance 32 0x1
distance 64 0x1f
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x7cfb50617f90081294fe87ba6f3d6c744a0185f7ff9413c5e77e164b06c30d137371b751278bac07a0b0eeff5bd6a9c298e09351df6e8e34688c6c66942f2175
$\text{brainpool_overlap}()$
o 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1c
$\text{weierstrass}()$
a 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1c
b 0x879da