Curve detail

Definition

Name w-510-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x3eddffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 510
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x3eddfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
Param $b$ 0x988d

Characteristics

Order 0x3eddffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb9146ccde150ef33747ab29d1e6573d8d22de95e322303f3a00b200986fa9a2d
Cofactor 0x1
$j$-invariant 0x243063c1052f01002754a0b67ab8c46f9cf001ca12e81aa08295593eb3f9b4524ead8ef2416ed9ac4b0ac69dbecdceefec505eee0f153139805293078f617e02
Trace $t$ 0x46eb93321eaf10cc8b854d62e19a8c272dd216a1cddcfc0c5ff4dff6790565d3

Traits

$\text{cofactor}()$
order 0x3eddffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb9146ccde150ef33747ab29d1e6573d8d22de95e322303f3a00b200986fa9a2d
cofactor 0x1
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0x3ede00000000000000000000000000000000000000000000000000000000000046eb93321eaf10cc8b854d62e19a8c272dd216a1cddcfc0c5ff4dff6790565d3
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xf704883ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff182dad46fb6eaba5c13004d7a750b35ca68b2565c2f67e928405f3fe5f375b8f9f6a2436cdf1dfcf0c5423770d65cad74bc2e3938938fbc8eb3365e298be2bed
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x2', '0x2', '0x97', '0x1b7', '0x89b', '0x1def551f940309f7', '0xf7107e219703f04ec53aa1b28a686f916ca7fabeb0f02b46f851c67758349c270e28e42d9559ebe83293e89ac9d21d4d826a272e7']
(-)largest_factor_bitlen 0x1a4
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x5', '0x7', '0xa7', '0x10d', '0x265', '0xa67', '0x4086badf', '0x6edc9e23', '0x3dae882a9e6d5cd935895f765912cad759474f1571970a9f53c7b94ca9557d7abe6cc3a0fa813f54509eb5a1ab219fd0fd44135']
(-)largest_factor_bitlen 0x19a
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x3', '0xd', '0x105cb0f', '0x5c4eef8e15', '0xaedd253bb6ceacdfea92803d55ba081d65865586a01008863439277b9ec3b25729c71a7ca7f490c61c030274133c13fdfccba84c2331a3']
(-)largest_factor_bitlen 0x1b8
$\text{kn_factorization}(k=6)$
(+)factorization ['0x5', '0x61', '0x1994f5', '0x10f9777', '0x7560a3c9230cd9808ca3c0ee93a93d8c202890af63a05a94f091ea2aa4c744f363e17254296d4c9670d95daad09238e8c3014b0e72c8070e101']
(+)largest_factor_bitlen 0x1cb
(-)factorization ['0x4d35c7', '0xf006a0f6f7', '0x535e6548daf8b06773ef1851e640c59035bdc78b4ade3335b8c32b52a3bede8d007eba5c32fb4fc0c891f94aedc08adb0e8fceaabdeae240d']
(-)largest_factor_bitlen 0x1c3
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x5
full 0xa
relative 0x2
$\text{torsion_extension}(l=13)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x60
full 0x60
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x46eb93321eaf10cc8b854d62e19a8c272dd216a1cddcfc0c5ff4dff6790565d3
factorization ['0x3', '0x5', '0x5', '0x7', '0x1f', '0x2f', '0x7c285', '0x797fbd9', '0x3294b163e12e2f01', '0x859aa142207792fa6e332557b2caccbb']
$\text{conductor}(deg=3)$
ratio_sqrt 0x2b3852b90491545a3ecffb2858af4ca35974da9a3d09816d7bfa0c01a0c8a4706095dbc9320e2030f3abdc88f29a3528b43d1c6c76c7043714cc9a1d6741d416
factorization ['0x2', '0xd', '0x17f', '0x10e2ff', '0x1de2bf', '0x79931e58f', '0x123d497d6f2ee2d3', '0x18409fad2bb831623', '0xafd4aa3ee2e0b4c97ca17af51ceb1cc05d9c0ab51df3c8c976a22d04eed46fad595f5928ff']
$\text{conductor}(deg=4)$
ratio_sqrt 0x1d63ba1c1daa7e25d7a0d2d35ec7ffd892ffe92a275402fb0a6a1a632cf6467a0d2dab9cb768770536866d3e165fd5e184c831adb894ca25675d23163056d72d08e4f39d2902287043806c65134dca601314310543b47c1345d5d8ae2557164f
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x4
complement_bit_length 0x3
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order 0x3eddffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb9146ccde150ef33747ab29d1e6573d8d22de95e322303f3a00b200986fa9a2c
complement_bit_length 0x1
$\text{small_prime_order}(l=3)$
order 0x3eddffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb9146ccde150ef33747ab29d1e6573d8d22de95e322303f3a00b200986fa9a2c
complement_bit_length 0x1
$\text{small_prime_order}(l=5)$
order 0xfb77fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee451b3378543bccdd1eaca747995cf6348b7a578c88c0fce802c80261bea68b
complement_bit_length 0x3
$\text{small_prime_order}(l=7)$
order 0xfb77fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee451b3378543bccdd1eaca747995cf6348b7a578c88c0fce802c80261bea68b
complement_bit_length 0x3
$\text{small_prime_order}(l=11)$
order 0x1f6effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc8a3666f0a87799ba3d594e8f32b9ec6916f4af191181f9d0059004c37d4d16
complement_bit_length 0x2
$\text{small_prime_order}(l=13)$
order 0x3eddffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb9146ccde150ef33747ab29d1e6573d8d22de95e322303f3a00b200986fa9a2c
complement_bit_length 0x1
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x4', '0x3']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x1
full 0xa
relative 0xa
$\text{isogeny_extension}(l=13)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=17)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x5
full 0x5
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x46eb93321eaf10cc8b854d62e19a8c272dd216a1cddcfc0c5ff4dff6790565d3
trace_factorization ['0x3', '0x5', '0x5', '0x7', '0x1f', '0x2f', '0x7c285', '0x797fbd9', '0x3294b163e12e2f01', '0x859aa142207792fa6e332557b2caccbb']
number_of_factors 0x9
$\text{trace_factorization}(deg=2)$
trace 0x46eb93321eaf10cc8b854d62e19a8c272dd216a1cddcfc0c5ff4dff6790565d3
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0xf6
expected 0xff
ratio 1.03659
$\text{hamming_x}(weight=2)$
x_coord_count 0xfddf
expected 0xfd81
ratio 0.99855
$\text{hamming_x}(weight=3)$
x_coord_count 0xa7a6f7
expected 0xa7aefe
ratio 1.00019
$\text{square_4p1}()$
p NO DATA (timed out)
order 0x1
$\text{pow_distance}()$
distance 0x12200000000000000000000000000000000000000000000000000000000000046eb93321eaf10cc8b854d62e19a8c272dd216a1cddcfc0c5ff4dff6790565d3
ratio 55.49655
distance 32 0xd
distance 64 0x13
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x330454f8c6da76fa882c6c107d31d48abe8f1875ffff40ca3698abe9956449fbf41ee7f9781d4a880b09ab90656dd47280ee93bfcaf97e4f2c610c822e2a984b
$\text{brainpool_overlap}()$
o 0x1ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
$\text{weierstrass}()$
a 0x3eddfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
b 0x988d