Curve detail

Definition

Name w-384-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0xb0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 384
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0xb0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
Param $b$ 0x6c96

Characteristics

Order 0xb0ffffffffffffffffffffffffffffffffffffffffffffffba9b7f14ca7512537a4edcd38a7c41da29be4894b298eebb
Cofactor 0x1
$j$-invariant 0x3d01bf71194313e5bc0b2ace28c9f389cdeb62b7c7d842fc45bcdea37f7324f26d5e42f81ebc4797eba9173cede2623e
Trace $t$ 0x456480eb358aedac85b1232c7583be25d641b76b4d671145

Traits

$\text{cofactor}()$
order 0xb0ffffffffffffffffffffffffffffffffffffffffffffffba9b7f14ca7512537a4edcd38a7c41da29be4894b298eebb
cofactor 0x1
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0xb10000000000000000000000000000000000000000000000456480eb358aedac85b1232c7583be25d641b76b4d671145
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x7a60fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd4ecf54f3c38ac64ef4c9a196927c3be8aca41d2694a66e308239ef1b863703c758b6766c295b9ecb474a3f9068b03c9d
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x2', '0xb', '0x2f', '0x137', '0x1e7', '0x13265', '0xe15a354c049', '0x8ffb8c4d1effdf4900d15e0d1d91ec2b81abb3e0062464d457a9fd6ddf094dfa1f271ffd4f']
(+)largest_factor_bitlen 0x128
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x2', '0x2', '0x2', '0x2', '0x365fe8648f41', '0x9c3fd2d7e5a34708b1e78afc3623c10c80c5f1fdab4aad2f30ace58cb42f401b62cc6ab27b7a338e3f03']
(-)largest_factor_bitlen 0x150
$\text{kn_factorization}(k=4)$
(+)factorization ['0x5', '0x4b1f', '0x8f9c40739', '0x4550aec5b5f64fd', '0xa4d655f951ebc60cff', '0x1345eaadd25a28a359af921a7d8a48a1d53eab438b828fef2b45']
(+)largest_factor_bitlen 0xcd
(-)factorization ['0x3', '0x3', '0xd', '0x13', '0x137c5a53', '0x155df12b', '0x2c0660819', '0xf55a82c8405', '0xb5131662b9b5b', '0x1ae044a86922670637338f6bf8e22fc0aeac7a30cbeca7fb']
(-)largest_factor_bitlen 0xbd
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x2', '0x2', '0x3', '0x3', '0x3', '0xef', '0x7f3d', '0x8d4719f251009a73ceddbc3bec1c1db53e4df3710257bf23a1827bb081074be8e71c38b8102af27a57db6cc15']
(+)largest_factor_bitlen 0x164
(-)factorization ['0x2', '0x7', '0x1639', '0x1b9d', '0xe4cd', '0x1d81c49cbf2cbc74ee3f1a49de0bbe6c9d4f170c320ef27c3c1e7c31295e0c39e9ef5105cc7a0fe42623e5']
(-)largest_factor_bitlen 0x155
$\text{kn_factorization}(k=6)$
(+)factorization ['0x3f5', '0x8c43c0bb75a8d', '0x1e9d4df6069b5b22854eb05735636aacdc35888425a256ddc904e7c4051a3611270f10f2a776f8c193']
(+)largest_factor_bitlen 0x145
(-)factorization ['0x5', '0x6d439ec79b', '0xc9589bcfc701aaf', '0x278b90b4738af46e296bf7140fe81af0747a9c8ad7c5b0a3423261947ff97799c3c44ad9']
(-)largest_factor_bitlen 0x11e
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x2b', '0x226859', '0x3d96bb', '0x128ca71', '0xd8dec0f6e9', '0x1c5a7ddb2dd8057d875a6763fe6d98db0dda6cf8ddb38f59b6867e5a7a323392c1627']
(+)largest_factor_bitlen 0x111
(-)factorization ['0x2', '0x2', '0x3', '0x673fffffffffffffffffffffffffffffffffffffffffffffd7855f76cb6ef55b5cae00d0bb732669edaeffac12d935ed']
(-)largest_factor_bitlen 0x17f
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x30
full 0x30
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x78
full 0x78
relative 0x1
$\text{torsion_extension}(l=13)$
least 0xc
full 0xd
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x120
full 0x120
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x456480eb358aedac85b1232c7583be25d641b76b4d671145
factorization ['0x13d93d72a7b', '0x37f0027debb9021c11ebd6e0f86166efeac73f']
$\text{conductor}(deg=3)$
ratio_sqrt 0x9e30ab0c3c7539b10b365e696d83c417535be2d96b5991cf7dc610e479c8fc38a7498993d6a46134b8b5c06f974fc366
factorization NO DATA (timed out)
$\text{conductor}(deg=4)$
ratio_sqrt 0x5adbb5e96a6153a50cd8d7b5283b277bf4b383124faaa3ce60391b23ca7a145bf227386812875619bbb869853f365264c42836baec9f339f4f96c278391c2f7a25d60434131c5f39
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x3', '0x4']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x8
full 0x8
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0xc
full 0xc
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x1
full 0xd
relative 0xd
$\text{isogeny_extension}(l=17)$
least 0x12
full 0x12
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x14
full 0x14
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x456480eb358aedac85b1232c7583be25d641b76b4d671145
trace_factorization ['0x13d93d72a7b', '0x37f0027debb9021c11ebd6e0f86166efeac73f']
number_of_factors 0x2
$\text{trace_factorization}(deg=2)$
trace 0x456480eb358aedac85b1232c7583be25d641b76b4d671145
trace_factorization ['0x3', '0x3', '0xbbc560f14f7426cb', '0x3e891b8f5acb502f5', '0xcfdc676937d88ba1256822fb741841669a4246bff554aaae126d064a5f5421b']
number_of_factors 0x4
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0xb9
expected 0xc0
ratio 1.03784
$\text{hamming_x}(weight=2)$
x_coord_count 0x8fd4
expected 0x8fa0
ratio 0.99859
$\text{hamming_x}(weight=3)$
x_coord_count 0x476ea8
expected 0x477040
ratio 1.00009
$\text{square_4p1}()$
p NO DATA (timed out)
order 0x3
$\text{pow_distance}()$
distance 0x30ffffffffffffffffffffffffffffffffffffffffffffffba9b7f14ca7512537a4edcd38a7c41da29be4894b298eebb
ratio 3.61224
distance 32 0x5
distance 64 0x5
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x6a2e813b8f181eb2b7e60cd8a5219cfa83fa00b1271e019640b4b199a93cbdd97e521ad327a3a8311aa963de4d284ef2
$\text{brainpool_overlap}()$
o 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffc
$\text{weierstrass}()$
a 0xb0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
b 0x6c96