Curve detail

Definition

Name w-383-mers
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe5b)
Field bits 383
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe58
Param $b$ 0x17dbc

Characteristics

Order 0x7fffffffffffffffffffffffffffffffffffffffffffffffa9caf814a8a116ad9fb0b4035417aaf319297fc0bb7a439f
Cofactor 0x1
$j$-invariant 0x4c6dafb9b071be8dcf501e229ccf718a7db00cdffe463355a1709a1538edae59f50e16fd89261cfb138db23400f32fbd
Trace $t$ 0x563507eb575ee952604f4bfcabe8550ce6d6803f4485babd

Traits

$\text{cofactor}()$
order 0x7fffffffffffffffffffffffffffffffffffffffffffffffa9caf814a8a116ad9fb0b4035417aaf319297fc0bb7a439f
cofactor 0x1
$\text{discriminant}()$
cm_disc -0x1e2f853b1999b56cf545a53d57387b7aa129d19ef177b34cfdc57bae8d3b3a991df04987177beccffa91dc5ea0766c9e3
factorization ['0x3b', '0x1fc40ae6e7b9', '0x41f865883131524e509b097a6c79d4c148d82738e753288d95fda8d4a6cf5f99a37059150f86ab9238c1']
max_conductor 0x1
$\text{twist_order}(deg=1)$
twist_cardinality 0x800000000000000000000000000000000000000000000000563507eb575ee952604f4bfcabe8550ce6d6803f4485b919
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe5a1d07ac4e6664a930aba5ac2a8c784855ed62e610e884cb3023a845172c4c566e20fb678e8841330056e23a15f89be72d
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x3', '0xb', '0x53', '0x5fb53a6a5ce76b343f2ea3903754c5c57db5c9fa3486f68f1f879820a4f7ef4f41d91569c470487db0ad189557ef']
(+)largest_factor_bitlen 0x16f
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x2', '0x2', '0x805', '0x33c1', '0x3cfcbf9', '0xf88da98377565a240ad0af76209411d57789b95e93f2b28446caeaf3e8f57e0ca89252aa3a3742f1e63']
(-)largest_factor_bitlen 0x14c
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x7', '0x7', '0x13', '0x306689', '0x15110abd5197a2f', '0x2358e8d3878b9158c4d14ddfa8cc0ea4ee87375be53a8329582621c2dca4d46d61485c9ae0f']
(-)largest_factor_bitlen 0x12a
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x2', '0xbf', '0x277', '0x8c17', '0x199145', '0x146c209', '0x30c8f25d1', '0x7b76efcb47', '0x86e70525112b', '0x906f5e31121017a7', '0xb24b3081209d9c0a2d11815a5a4c447']
(+)largest_factor_bitlen 0x7c
(-)factorization ['0x2', '0x3', '0x1d', '0x421f', '0x36c043', '0x3b796571', '0x11e9be2f6bc9f10113317c63cc6cb62f2a127c29d00b9860e8465798df611c635ab04ea01ca6327']
(-)largest_factor_bitlen 0x139
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x30
full 0x30
relative 0x1
$\text{torsion_extension}(l=11)$
least 0xf
full 0xf
relative 0x1
$\text{torsion_extension}(l=13)$
least 0xa8
full 0xa8
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x10
full 0x10
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x563507eb575ee952604f4bfcabe8550ce6d6803f4485babd
factorization ['0x3', '0x5', '0x5bf44cb6c3987057de32732fa64d27853a7e66a9e2b0c73']
$\text{conductor}(deg=3)$
ratio_sqrt 0x62f853b1999b56cf545a53d57387b7aa129d19ef177b34cfdc57bae8d3b3a991df04987177beccffa91dc5ea0766ced2
factorization NO DATA (timed out)
$\text{conductor}(deg=4)$
ratio_sqrt 0x4c6e708c6f14360b03c03d1d15906a6a198bca53f8e9a0c0cfcaaf8f05b145c10480e1e61e18f51e3190f6080071ac1e9b528d5259cd9305595aca7822d8b256a3d54c23b4592c39
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper 0x74a62bf1dbc265507e30ff3043ad35d04734491b1dc3f66ec9
lower 0x3ca
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x4', '0x3']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x8
full 0x8
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0xe
full 0xe
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x8
relative 0x8
$\text{isogeny_extension}(l=19)$
least 0x14
full 0x14
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x563507eb575ee952604f4bfcabe8550ce6d6803f4485babd
trace_factorization ['0x3', '0x5', '0x5bf44cb6c3987057de32732fa64d27853a7e66a9e2b0c73']
number_of_factors 0x3
$\text{trace_factorization}(deg=2)$
trace 0x563507eb575ee952604f4bfcabe8550ce6d6803f4485babd
trace_factorization ['0x11b', '0x11bd061ba016cbd', '0xb931ce1293c9a3690e0311a7716fa5cc5c6edb5511390270659c4dc73922bd2530bfc8190bff77a3']
number_of_factors 0x3
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0xb9
expected 0xbf
ratio 1.03243
$\text{hamming_x}(weight=2)$
x_coord_count 0x8ec1
expected 0x8ee0
ratio 1.00085
$\text{hamming_x}(weight=3)$
x_coord_count 0x46e309
expected 0x46e15f
ratio 0.99991
$\text{square_4p1}()$
p 0x3
order 0x7
$\text{pow_distance}()$
distance 0x563507eb575ee952604f4bfcabe8550ce6d6803f4485bc61
ratio 9.320213029429296e+57
distance 32 0x1
distance 64 0x1f
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x3f894ee0d5a7a779f781ad0cf28408cf9095ae56f3e92a6815dfe6afb4868bf5f5c24d42df06221e6fb78abfffb5436d
$\text{brainpool_overlap}()$
o 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffe58
$\text{weierstrass}()$
a 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe58
b 0x17dbc