Curve detail

Definition

Name w-382-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x3ffaffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 382
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x3ffafffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
Param $b$ -0x20a72

Characteristics

Order 0x3ffaffffffffffffffffffffffffffffffffffffffffffffa6eb1cff4bde214d73b321ffd8e82cd160ab86803ebb301d
Cofactor 0x1
$j$-invariant 0x7c1c7dcbbb7ac08a19e2c0907ee9189c5968fb6b296fa9dbd654c012f15a4f2649518c3caf514201d2d8887faad1f64
Trace $t$ 0x5914e300b421deb28c4cde002717d32e9f54797fc144cfe3

Traits

$\text{cofactor}()$
order 0x3ffaffffffffffffffffffffffffffffffffffffffffffffa6eb1cff4bde214d73b321ffd8e82cd160ab86803ebb301d
cofactor 0x1
$\text{discriminant}()$
cm_disc -0xe0ec7875415a0e687edc572aa208a23e2994f4bbf3577336dcc02d1cdc215b8f49044cfdf036c493385452d2a0971cb3
factorization ['0x7', '0x101', '0x2001c64a75bbb411b743a43d479514623603d5fbb9532b01674676d66d972cc322b951ae0693888c7b907b5998c5f5']
max_conductor 0x1
$\text{twist_order}(deg=1)$
twist_cardinality 0x3ffb000000000000000000000000000000000000000000005914e300b421deb28c4cde002717d32e9f54797fc144cfe3
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xffd8018ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1f13878abea5f1978123a8d55df75dc1d66b0b440ca88cc9233fd2e323dea470b6fbb3020fc93b6cc7abad2d5f68e34d
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x2', '0x2', '0x68926e50643ef0c9', '0x3abc60a13cb0f140c21ba761d1548367ff50bfbdda2c605d4bb173b1a4013e8d3f3bcac3ea816a33']
(+)largest_factor_bitlen 0x13e
(-)factorization ['0x2', '0x5', '0x5', '0xb', '0x11', '0x107a1', '0x319c3c4c154561355', '0x1a556e4ce1c44772c30edc6428d2f022d6ff3017c5229ec1f6dd54bb904dfac6cd4500df5']
(-)largest_factor_bitlen 0x121
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0xffebfffffffffffffffffffffffffffffffffffffffffffe9bac73fd2f788535cecc87ff63a0b34582ae1a00faecc073']
(-)largest_factor_bitlen 0x180
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x7', '0xd', '0x13', '0xe3', '0x259', '0x2c87', '0x41683a7f17811b6c3a4bd5b00012f9f9caa0f1f9646e093e6e8e3cdf8a586777f37e1db10a0be43f17128d']
(+)largest_factor_bitlen 0x157
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x397', '0x2c81', '0xa4f3', '0x2bb07', '0x103c6600d', '0x1588af7b95f34b724443d79c2b94bb298614cd84f928e001a4676882ade10cbf33319c689bb']
(-)largest_factor_bitlen 0x129
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x2', '0x5a7', '0x7277', '0x4e0f5', '0x12294bb776c590d2e94629082b0504061ffeec2b7ff8253feb7fbb75b9100199be6ec30c291eb265e3fb11']
(-)largest_factor_bitlen 0x155
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x5', '0xd', '0xd', '0x443', '0x1f01', '0x6425a539959bdaab15223b68c64d8829eb4275482e98f4c13647f67a7fd8d9d284fb40bfa5c807dc523a2e6b']
(-)largest_factor_bitlen 0x15f
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x6
full 0x7
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x5
full 0xa
relative 0x2
$\text{torsion_extension}(l=13)$
least 0x15
full 0x15
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x60
full 0x60
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x5914e300b421deb28c4cde002717d32e9f54797fc144cfe3
factorization ['0x3', '0x3', '0x3', '0x1a305', '0x33f8b9', '0xb5142b', '0xe097d45b4d56a55a142ee73fd7c8ec7']
$\text{conductor}(deg=3)$
ratio_sqrt 0x20fb7875415a0e687edc572aa208a23e2994f4bbf3577336dcc02d1cdc215b8f49044cfdf036c493385452d2a0971cb6
factorization ['0x2', '0x2234cf8ecfb9', '0xde4986f4a1992a5', '0x8e2359e51e3096ed29691106701c7f12dad36bb2f10d12791e81d5d7de5ab51662e77']
$\text{conductor}(deg=4)$
ratio_sqrt 0x21bd991cfdeb83cfa51542148e8d48e372b36cf60158cc051118ff17da21879ef6e81a31ae6add6602cbf2e5ed6400febe6efd56b5e8339bd06d8e14d8fe6a42daaf2031ab48cf7f
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x4
complement_bit_length 0x3
$\text{class_number}()$
upper 0x4f6071cb969756421f35bd0f1c4365a1ab6098a6066a1c2686
lower 0x1a6
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x7
relative 0x7
$\text{isogeny_extension}(l=11)$
least 0x1
full 0xa
relative 0xa
$\text{isogeny_extension}(l=13)$
least 0x7
full 0x7
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x12
relative 0x12
$\text{trace_factorization}(deg=1)$
trace 0x5914e300b421deb28c4cde002717d32e9f54797fc144cfe3
trace_factorization ['0x3', '0x3', '0x3', '0x1a305', '0x33f8b9', '0xb5142b', '0xe097d45b4d56a55a142ee73fd7c8ec7']
number_of_factors 0x5
$\text{trace_factorization}(deg=2)$
trace 0x5914e300b421deb28c4cde002717d32e9f54797fc144cfe3
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0xc1
expected 0xbf
ratio 0.98964
$\text{hamming_x}(weight=2)$
x_coord_count 0x8dc5
expected 0x8e21
ratio 1.00253
$\text{hamming_x}(weight=3)$
x_coord_count 0x465667
expected 0x46533e
ratio 0.99982
$\text{square_4p1}()$
p NO DATA (timed out)
order 0x1
$\text{pow_distance}()$
distance 0x5000000000000000000000000000000000000000000005914e300b421deb28c4cde002717d32e9f54797fc144cfe3
ratio 3275.8
distance 32 0x3
distance 64 0x1d
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x372b04bd7be47f49dddc010c62ea41cb5f4e58b5b93f771808019d2ac978f149d93de85d3ed8c3536f69a5350468c1dd
$\text{brainpool_overlap}()$
o 0x1ffffffffffffffffffffffffffffffffffffffffffffffffffffffd
$\text{weierstrass}()$
a 0x3ffafffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
b -0x20a72