Curve detail

Definition

Name w-256-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0xffa7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 256
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0xffa7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
Param $b$ 0x14e6a

Characteristics

Order 0xffa7fffffffffffffffffffffffffffffc517513e6e5074b9d10c5e1a79857eb
Cofactor 0x1
$j$-invariant 0xbdd11a669cf91ff7ba81bd7a3159895c9af1a2ae722e0dd0a63e11de0d5777a0
Trace $t$ 0x3ae8aec191af8b462ef3a1e5867a815
Embedding degree $k$ 0x7fd3fffffffffffffffffffffffffffffe28ba89f37283a5ce8862f0d3cc2bf5
CM discriminant -0x3fe9271bd5313d8b2502498c5435cb527c270b363ccc4c09445cda98ce0be6e43

Traits

$\text{cofactor}()$
order 0xffa7fffffffffffffffffffffffffffffc517513e6e5074b9d10c5e1a79857eb
cofactor 0x1
$\text{discriminant}()$
cm_disc -0x3fe9271bd5313d8b2502498c5435cb527c270b363ccc4c09445cda98ce0be6e43
factorization ['0x7', '0x9214ebad5502d5d054978389e50d3e7364eb8757666540152e8b1838b26458e5']
max_conductor 0x1
$\text{twist_order}(deg=1)$
twist_cardinality 0xffa8000000000000000000000000000003ae8aec191af8b462ef3a1e5867a815
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xff501e3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffc016d8e42acec274dafdb673abca34ad83d8f4c9c333b3f6bba3256731f4191bd
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x2', '0x11', '0x17', '0xa8b', '0xe21', '0x138b', '0x1ee9f2af315f', '0x1e79407b57e1a3f1659dc650d0602cb3624ab88eab']
(+)largest_factor_bitlen 0xa5
(-)factorization ['0x2', '0x3', '0xc26ccd91e3a7', '0x14f601e0439350606e3', '0x2ad34f0e0d72bd08ed9074be46ff05adcb']
(-)largest_factor_bitlen 0x86
$\text{kn_factorization}(k=2)$
(+)factorization ['0x3', '0x293', '0x449', '0x1b2d0c7dc863', '0x918c6eb0cbfe2297d69e0ac64d442063d7c5115bac9d7a3d']
(+)largest_factor_bitlen 0xc0
(-)factorization ['0x5', '0x17cbd5e8a7', '0x7e0114ce4b99b3caf', '0x8bb2197cefc5f297fc32dda53852424fa29d29']
(-)largest_factor_bitlen 0x98
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x5', '0x7', '0x6d', '0x2738b', '0x4d5298ddb05f', '0x22c164dce8cc681db29e97474609238c08e29500d79d5b']
(+)largest_factor_bitlen 0xb6
(-)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x2', '0xbfbdfffffffffffffffffffffffffffffd3d17ceed2bc578b5cc94693db241f']
(-)largest_factor_bitlen 0xfc
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x3', '0x7', '0x51eaa7d91d705b', '0x32ba3fe03c518544be41c319b85a82e45b3a8276250c0e44cf']
(-)largest_factor_bitlen 0xc6
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x2', '0x2', '0x3', '0x3', '0x3', '0x1f', '0x1c46f', '0x8138025ced7', '0x6ffc471a8be3', '0x7d3c6131b33d1e7cec7d58866b9ca19ac65']
(+)largest_factor_bitlen 0x8b
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=6)$
(+)factorization ['0xd', '0x2f', '0xcade13', '0x20fcef69', '0x10b35b94d55613', '0x178dd46d6dfe6743f91116f985fc3852dec51']
(+)largest_factor_bitlen 0x91
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x25b1ca5cad29', '0x24be40ec068af043d29c6177', '0xa563e485575ab6a270ece6e03248d9']
(+)largest_factor_bitlen 0x78
(-)factorization ['0x2', '0x2', '0x3', '0x5', '0xb', '0xd', '0x3565536c7c993df0f65536c7c993df0f648e90fe4f0408af3d912b1e8a5bbb']
(-)largest_factor_bitlen 0xf6
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x5', '0x5', '0x115', '0xd00ab', '0xbc4fbe61', '0x545aba5138b7dc73f613605', '0x7ff26ef9d2d71be8cb3b8af6b9']
(+)largest_factor_bitlen 0x67
(-)factorization ['0x21d', '0x3c7cec9950eab4c2f51dcfbbdc0976c5cb13bef4259823cbdb57b9772a04d03']
(-)largest_factor_bitlen 0xfa
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x6
full 0x7
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x78
full 0x78
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x6
full 0xc
relative 0x2
$\text{torsion_extension}(l=17)$
least 0x4
full 0x10
relative 0x4
$\text{conductor}(deg=2)$
ratio_sqrt 0x3ae8aec191af8b462ef3a1e5867a815
factorization ['0x5', '0x27a7', '0x4c1084705d732eb63fae804aec7']
$\text{conductor}(deg=3)$
ratio_sqrt 0xff9a71bd5313d8b2502498c5435cb527c270b363ccc4c09445cda98ce0be6e46
factorization ['0x2', '0x17', '0x1acf', '0xdc02d6b773', '0x1fb80cb4fc0f', '0x1f24ce3ef2656ddd046b8933e8a98f5505b27b7']
$\text{conductor}(deg=4)$
ratio_sqrt 0x75a5befdb5bf6e45212beab237018f37028c576b383e5656f3101fba5e48070685b4085cdf8c3f12dcacca77dbf53a9
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x2
complement_bit_length 0x2
$\text{class_number}()$
upper 0x71c48652fbc991658016abcfe4d4daf05a
lower 0x1
$\text{small_prime_order}(l=2)$
order 0x5537fffffffffffffffffffffffffffffec5d1b14cf7026e89b041f5e2881d4e
complement_bit_length 0x2
$\text{small_prime_order}(l=3)$
order 0x5537fffffffffffffffffffffffffffffec5d1b14cf7026e89b041f5e2881d4e
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0x5537fffffffffffffffffffffffffffffec5d1b14cf7026e89b041f5e2881d4e
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0x5537fffffffffffffffffffffffffffffec5d1b14cf7026e89b041f5e2881d4e
complement_bit_length 0x2
$\text{small_prime_order}(l=11)$
order 0x7fd3fffffffffffffffffffffffffffffe28ba89f37283a5ce8862f0d3cc2bf5
complement_bit_length 0x2
$\text{small_prime_order}(l=13)$
order 0xffa7fffffffffffffffffffffffffffffc517513e6e5074b9d10c5e1a79857ea
complement_bit_length 0x1
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x4', '0x3']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x7
relative 0x7
$\text{isogeny_extension}(l=11)$
least 0xc
full 0xc
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x1
full 0xc
relative 0xc
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x10
relative 0x10
$\text{isogeny_extension}(l=19)$
least 0x5
full 0x5
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x3ae8aec191af8b462ef3a1e5867a815
trace_factorization ['0x5', '0x27a7', '0x4c1084705d732eb63fae804aec7']
number_of_factors 0x3
$\text{trace_factorization}(deg=2)$
trace 0x3ae8aec191af8b462ef3a1e5867a815
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x84
expected 0x80
ratio 0.9697
$\text{hamming_x}(weight=2)$
x_coord_count 0x3fad
expected 0x3fc0
ratio 1.00117
$\text{hamming_x}(weight=3)$
x_coord_count 0x1510d3
expected 0x151580
ratio 1.00087
$\text{square_4p1}()$
p 0x1
order 0x3
$\text{pow_distance}()$
distance 0x58000000000000000000000000000003ae8aec191af8b462ef3a1e5867a815
ratio 743.72727
distance 32 0xb
distance 64 0x15
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x5f9abb8c2b23b29a3da9ee8c8b5e7857b4f50991ae200dd76228fa07482acad3
$\text{brainpool_overlap}()$
o 0x7ffffffffffffffffffffffc
$\text{weierstrass}()$
a 0xffa7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc
b 0x14e6a