Curve detail

Definition

Name w-255-mers
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd03)
Field bits 255
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd00
Param $b$ -0x51bd

Characteristics

Order 0x7fffffffffffffffffffffffffffffff864a38283ad2b3dfab8fac983c594aeb
Cofactor 0x1
$j$-invariant 0x661734f09b8540109c7681cdde324ef2080bff3ca6ef898c0002ffb7060110ba
Trace $t$ 0x79b5c7d7c52d4c2054705367c3a6b219
Embedding degree $k$ 0x3fffffffffffffffffffffffffffffffc3251c141d6959efd5c7d64c1e2ca575
CM discriminant -0x1c622a801d47d31929427898fe6049161ccb6472bd76d9816a4f91a0475ad2d9b

Traits

$\text{cofactor}()$
order 0x7fffffffffffffffffffffffffffffff864a38283ad2b3dfab8fac983c594aeb
cofactor 0x1
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0x8000000000000000000000000000000079b5c7d7c52d4c2054705367c3a6af1d
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd0239dd57fe2b82ce6d6bd8767019fb6e9e3349b8d4289267e95b06e5fb8a5bba75
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x2', '0xd', '0x3b', '0x1fe1', '0xb48b', '0x4a38bf89ed42039', '0x1a3780881d4886ea3ba35bc58d18547c2ff8cac7']
(+)largest_factor_bitlen 0x9d
(-)factorization ['0x2', '0x3', '0x3', '0x43', '0x9d', '0xb3', '0x2479', '0x681173', '0x44604a62c855bfe5e408585d7aee72b7d256d5ae08e72489b']
(-)largest_factor_bitlen 0xc3
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x17b', '0x58bf34df5b2371', '0x1f2cd1b9937efdfba0ee166128f33469a232a57eb44e5965f']
(-)largest_factor_bitlen 0xc1
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x47', '0x655', '0x1f14708cb', '0x498b7072d1', '0xc3ea7753e88ef71396824c0a8b0443303c1dd6c101']
(+)largest_factor_bitlen 0xa8
(-)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x2', '0x5', '0x5', '0x17', '0x8b', '0x13d', '0xb109b', '0xaaf7d9aa7', '0x1abb157f73b', '0x206b55777b741d', '0x28a915bd80a388c5f5f1']
(-)largest_factor_bitlen 0x4e
$\text{kn_factorization}(k=4)$
(+)factorization ['0xb', '0x11', '0x4577', '0x1bc13', '0x7fce5', '0x10d8b79b09d', '0x4074630080e7b00528ed', '0x2bf386b39ad63fe35bd57']
(+)largest_factor_bitlen 0x52
(-)factorization ['0x3', '0x1d', '0x5e293205e293205e293205e293205e28d87d38060dd8caf10b7284d9eba8acd']
(-)largest_factor_bitlen 0xfb
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x2', '0x7', '0x2db6db6db6db6db6db6db6db6db6db6d8b63a65782b8f719066a2b5af0fb519d']
(-)largest_factor_bitlen 0xfe
$\text{kn_factorization}(k=6)$
(+)factorization ['0xbe9', '0x1f1b', '0xaec83ae65', '0x38ef5c968c2a40dfa5', '0xda706c088d06f5b310c137538368c7f9']
(+)largest_factor_bitlen 0x80
(-)factorization ['0x5ad', '0x679', '0x139d', '0x5873', '0x1f2e5', '0xbd28f', '0x5d2e13', '0x4cadca8b5a56e698f', '0x13a683b287832701f2db55']
(-)largest_factor_bitlen 0x55
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x5', '0x29', '0x19e0d', '0x239a5', '0x4207db', '0x25aabe8a7697ecefba5dd7193d26ac0bd87b97c18da3d9cc9']
(+)largest_factor_bitlen 0xc2
(-)factorization ['0x2', '0x2', '0x3', '0xb', '0x1505', '0x18206ac3b', '0x65f326ff1', '0x89aa97a04383623b30c431edcfae55041932eb0361d']
(-)largest_factor_bitlen 0xac
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x3', '0x3', '0x3', '0x71', '0x155f', '0xe0bb9d', '0x281875f129c6d', '0x9bf35629b549624cbaadbf4d9527be9154d02cdf']
(+)largest_factor_bitlen 0xa0
(-)factorization ['0x5', '0x3d', '0x288d9f8af', '0x6a5a66563575', '0x57a50dcd1f23f', '0x9502d6f1a5a5b042f0f25def97665b']
(-)largest_factor_bitlen 0x78
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x10
full 0x10
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x5
full 0x5
relative 0x1
$\text{torsion_extension}(l=13)$
least 0xc
full 0xd
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x10
full 0x11
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x79b5c7d7c52d4c2054705367c3a6b219
factorization ['0x47', '0x1b6d78c0d981319b1dd86954ade4a9f']
$\text{conductor}(deg=3)$
ratio_sqrt 0x4622a801d47d31929427898fe6049161ccb6472bd76d9816a4f91a0475ad3692
factorization ['0x2', '0xfe7a9b03e105c71', '0x2346fcc9815477ceb8eebb005988a9faf72ef0cebb7a9f859']
$\text{conductor}(deg=4)$
ratio_sqrt 0x5e331295970aa8f55bbd8e8d531b01ab9143f70c02378162cb9c85ecb526a74f655cbddef32d3a898a8af0cedd65a38d
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x2
complement_bit_length 0x2
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order 0x7fffffffffffffffffffffffffffffff864a38283ad2b3dfab8fac983c594aea
complement_bit_length 0x1
$\text{small_prime_order}(l=3)$
order 0xe38e38e38e38e38e38e38e38e38e38e2b5d94763f6cbea7130ff6bb94ed7a1a
complement_bit_length 0x4
$\text{small_prime_order}(l=5)$
order 0x2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa8218bd62be463bf5392fe432bec86e4e
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0x3fffffffffffffffffffffffffffffffc3251c141d6959efd5c7d64c1e2ca575
complement_bit_length 0x2
$\text{small_prime_order}(l=11)$
order 0x3fffffffffffffffffffffffffffffffc3251c141d6959efd5c7d64c1e2ca575
complement_bit_length 0x2
$\text{small_prime_order}(l=13)$
order 0x3fffffffffffffffffffffffffffffffc3251c141d6959efd5c7d64c1e2ca575
complement_bit_length 0x2
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x8
full 0x8
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x1
full 0x5
relative 0x5
$\text{isogeny_extension}(l=13)$
least 0x1
full 0xd
relative 0xd
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x11
relative 0x11
$\text{isogeny_extension}(l=19)$
least 0x14
full 0x14
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x79b5c7d7c52d4c2054705367c3a6b219
trace_factorization ['0x47', '0x1b6d78c0d981319b1dd86954ade4a9f']
number_of_factors 0x2
$\text{trace_factorization}(deg=2)$
trace 0x79b5c7d7c52d4c2054705367c3a6b219
trace_factorization ['0x3', '0x907', '0xbe9', '0xf425', '0x15175', '0x1cd34d', '0x15836857fb5858b', '0x33a3811eff119fc3d8bfb5b494508bf']
number_of_factors 0x8
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x75
expected 0x7f
ratio 1.08547
$\text{hamming_x}(weight=2)$
x_coord_count 0x3fe9
expected 0x3f40
ratio 0.98967
$\text{hamming_x}(weight=3)$
x_coord_count 0x14dac3
expected 0x14d63f
ratio 0.99915
$\text{square_4p1}()$
p 0x1
order 0x1
$\text{pow_distance}()$
distance 0x79b5c7d7c52d4c2054705367c3a6b515
ratio 3.5786799867032686e+38
distance 32 0xb
distance 64 0x15
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x260ad32bdc94c614c23b58d6abadef723c97eef8e0f7d98557a50870710bbd8b
$\text{brainpool_overlap}()$
o 0x3ffffffffffffffffffffd01
$\text{weierstrass}()$
a 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd00
b -0x51bd