Curve detail

Definition

Name sect571r1 (nist/B-571, secg/sect571r1, x962/ansit571r1)
Category secg
Field Binary
Field polynomial $x^{571} + x^{10} + x^{5} + x^{2} + 1$
Field bits 571
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
Param $b$ 0x02f40e7e2221f295de297117b7f3d62f5c6a97ffcb8ceff1cd6ba8ce4a9a18ad84ffabbd8efa59332be7ad6756a66e294afd185a78ff12aa520e4de739baca0c7ffeff7f2955727a
Generator $x$ 0x0303001d34b856296c16c0d40d3cd7750a93d1d2955fa80aa5f40fc8db7b2abdbde53950f4c0d293cdd711a35b67fb1499ae60038614f1394abfa3b4c850d927e1e7769c8eec2d19
Generator $y$ 0x037bf27342da639b6dccfffeb73d69d78c6c27a6009cbbca1980f8533921e8a684423e43bab08a576291af8f461bb2a8b3531d2f0485c19b16e2f1516e23dd3c1a4827af1b8ac15b
Simulation seed 0x2aa058f73a0e33ab486b0f610410c53a7f132310

Characteristics

Order 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe661ce18ff55987308059b186823851ec7dd9ca1161de93d5174d66e8382e9bb2fe84e47
Cofactor 0x2
$j$-invariant 0x45cbb32ced5555aa026b3b1728cec729c0d032e61381d4aae04bd3974ab437328b3d7123043021cc53b9e834f5cc04fde6ccbc0e9f4adb71d18678796b42848a95446bb29ef5928
Trace $t$ 0x333c63ce0154cf19eff4c9cf2fb8f5c27044c6bdd3c42d855d165322f8fa2c89a02f6373

Traits

$\text{cofactor}()$
order 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe661ce18ff55987308059b186823851ec7dd9ca1161de93d5174d66e8382e9bb2fe84e47
cofactor 0x2
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0x80000000000000000000000000000000000000000000000000000000000000000000000333c63ce0154cf19eff4c9cf2fb8f5c27044c6bdd3c42d855d165322f8fa2c89a02f6374
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa411e0304016513267126336c9d6fdf330e270214f215b043cde1a9f73ceaa6b865a8feea8977c653bb8f06dad987e4074d9c34cf350d33e7d0771797bf42d62dbf3e2b6adc25aa
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x7', '0x864d', '0x169f44c4ecb', '0x18a70521054cbcd3a04031412f2e6ed0351922748c4f4ffed4c08b2b0dfc284fa3cd105d2667374d96863a2245268f472381f1080aaaa772c35baca966b316937']
(+)largest_factor_bitlen 0x201
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x5', '0x7', '0x15f15f15f15f15f15f15f15f15f15f15f15f15f15f15f15f15f15f15f15f15f15f15f15e8968fce0e667d694494352cf08134f49c4bfb2fea5365e9233e0060679a99477e23c311']
(-)largest_factor_bitlen 0x239
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x6ad', '0x9963e9d48f34474d71b1ce914d24ffd9a7058adc32ee2ca3938c5bacb6c009963e9d48ef6e11fd73fdd79f630495a8e150118b46d5400e8b0706ed2c686207ddc604276c9670b']
(-)largest_factor_bitlen 0x234
$\text{torsion_extension}(l=2)$
least None
full None
relative None
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x2
full 0x6
relative 0x3
$\text{torsion_extension}(l=11)$
least 0x5
full 0xa
relative 0x2
$\text{torsion_extension}(l=13)$
least 0x3
full 0xc
relative 0x4
$\text{torsion_extension}(l=17)$
least 0x90
full 0x90
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x333c63ce0154cf19eff4c9cf2fb8f5c27044c6bdd3c42d855d165322f8fa2c89a02f6373
factorization ['0xb', '0x1f', '0x45d', '0x827', '0xa6c9', '0x52b0aa5e8edb', '0x2355df43f25e33', '0x38213de8f899295', '0xa9c9e966c86decb696039']
$\text{conductor}(deg=3)$
ratio_sqrt 0x2411e0304016513267126336c9d6fdf330e270214f215b043cde1a9f73ceaa6b865a8feea8977c653bb8f06dad987e4074d9c34cf350d33e7d0771797bf42d62dbf3e2b6adc25a9
factorization ['0x7', '0x2f', '0x512a20209af', '0x58862dbba935aa81f7ca4698801166d1b0d4cde364f1099dd1fdf4cf8b88e366d41778d49359c842351b5902107d3b18f46ce256db8704975378edbf138a25d9ef']
$\text{conductor}(deg=4)$
ratio_sqrt 0x12661ffce851db9cd65b8a7746d95206b3f8fcc1ffeedcd26d0cf118c4e83e7ce0e4706186849c6a8e41deeec39126a9094e65bd26c726bc9b3b53528113589cbaf8264e976636959105288747ea7b30987953b89746bd4e85373194350b18c6966129c6bf6dec65283ba15
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement None
complement_bit_length None
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x2']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least None
full None
relative None
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=11)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=13)$
least 0x1
full 0xc
relative 0xc
$\text{isogeny_extension}(l=17)$
least 0x9
full 0x9
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x12
relative 0x12
$\text{trace_factorization}(deg=1)$
trace 0x333c63ce0154cf19eff4c9cf2fb8f5c27044c6bdd3c42d855d165322f8fa2c89a02f6373
trace_factorization ['0xb', '0x1f', '0x45d', '0x827', '0xa6c9', '0x52b0aa5e8edb', '0x2355df43f25e33', '0x38213de8f899295', '0xa9c9e966c86decb696039']
number_of_factors 0x9
$\text{trace_factorization}(deg=2)$
trace 0x333c63ce0154cf19eff4c9cf2fb8f5c27044c6bdd3c42d855d165322f8fa2c89a02f6373
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x3
$\text{isogeny_neighbors}(l=3)$
len 0x4
$\text{isogeny_neighbors}(l=5)$
len 0x6
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x23a
expected 0x11d
ratio 0.5
$\text{hamming_x}(weight=2)$
x_coord_count 0x27975
expected 0x13dd7
ratio 0.50175
$\text{hamming_x}(weight=3)$
x_coord_count 0x1d47e88
expected 0xeb7bfe
ratio 0.50264
$\text{square_4p1}()$
p 0x1
order NO DATA (timed out)
$\text{pow_distance}()$
distance 0x333c63ce0154cf19eff4c9cf2fb8f5c27044c6bdd3c42d855d165322f8fa2c89a02f6372
ratio 7.765231125884475e+85
distance 32 0xe
distance 64 0xe
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{brainpool_overlap}()$
o None
$\text{weierstrass}()$
a None
b None