Curve detail

Definition

Name sect283r1 (nist/B-283, secg/sect283r1, x962/ansit283r1)
Category secg
Field Binary
Field polynomial $x^{283} + x^{12} + x^{7} + x^{5} + 1$
Field bits 283
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x000000000000000000000000000000000000000000000000000000000000000000000001
Param $b$ 0x027b680ac8b8596da5a4af8a19a0303fca97fd7645309fa2a581485af6263e313b79a2f5
Generator $x$ 0x05f939258db7dd90e1934f8c70b0dfec2eed25b8557eac9c80e2e198f8cdbecd86b12053
Generator $y$ 0x03676854fe24141cb98fe6d4b20d02b4516ff702350eddb0826779c813f0df45be8112f4
Simulation seed 0x77e2b07370eb0f832a6dd5b62dfc88cd06bb84be

Characteristics

Order 0x3ffffffffffffffffffffffffffffffffffef90399660fc938a90165b042a7cefadb307
Cofactor 0x2
$j$-invariant 0x52b93729f30766131413473e14639b58a99eace4f5c4cf1e3cc939dab79766b75e0c63
Trace $t$ 0x20df8cd33e06d8eadfd349f7ab0620a499f3

Traits

$\text{cofactor}()$
order 0x3ffffffffffffffffffffffffffffffffffef90399660fc938a90165b042a7cefadb307
cofactor 0x2
$\text{discriminant}()$
cm_disc -0x1bc759948b007fb09347722a8155aae96db74435b143dbcaf586d23ee58a9649a413a357
factorization ['0x125c05fc429', '0x63871fd9057da87', '0x1437c8a1be4c00e112b461', '0x31471d9e807ea9baa3c54111e9']
max_conductor 0x1
$\text{twist_order}(deg=1)$
twist_cardinality 0x8000000000000000000000000000000000020df8cd33e06d8eadfd349f7ab0620a499f4
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff438a66b74ff804f6cb88dd57eaa55169248bbca4ebc24350a792dc11a7569b65bec5caa
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x3', '0x3', '0x7', '0x7', '0x3b7b', '0x29f85d', '0xb24365', '0xf13592b8fd7b3c6f', '0xb9d0963b731e11192d4da5797da1f427c93b5b']
(+)largest_factor_bitlen 0x98
(-)factorization ['0x4ad8b7', '0x38438e7', '0x7c7fee2f7ca3302a307996fd961bc0e74398fb79df17b767e9efa5f076d']
(-)largest_factor_bitlen 0xeb
$\text{kn_factorization}(k=2)$
(+)factorization ['0x5', '0xdf', '0xfe4e741', '0x130f6afd2a7c6bd', '0x365dd38a0fb3ed4851377', '0xe9e097494ad14e31edd6018f1a5']
(+)largest_factor_bitlen 0x6c
(-)factorization ['0x3', '0xd', '0x17', '0x67', '0x27137b', '0x9b12b85', '0xc202cf8fd859', '0xcc5f70f312b75b8a7317', '0xcae087af3ac61aeb0de2eb5']
(-)largest_factor_bitlen 0x5c
$\text{kn_factorization}(k=3)$
(+)factorization ['0x4859', '0x1f0bef', '0x9d65c62b8b', '0x472ec54415a0744630c544cbe990c839f930626a583955c605cc7']
(+)largest_factor_bitlen 0xd3
(-)factorization ['0x5', '0x5', '0x47', '0xb7b', '0xce5', '0x1c35ff88f', '0x36519d12a544704edae148a5794f3b062d1522d9176b404e81b5ecf']
(-)largest_factor_bitlen 0xda
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x33a3', '0x74e1', '0x1065381d818b0b635ce87', '0x1531aba36baec72931fbff70803525a6395d4cebf415b']
(-)largest_factor_bitlen 0xb1
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2dd', '0xdf85106a2c0165a1b3dd13356f691fc81eb84efac22d9e2949340ea8a5c15432eb973']
(+)largest_factor_bitlen 0x114
(-)factorization ['0x3', '0xad', '0x1d9e1', '0xb64c13120d7fb', '0xef7d22587ed97008a08eaf08f2e6ec8d305ddafa5e55e0620aa9']
(-)largest_factor_bitlen 0xd0
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x7', '0x3d', '0x11adf719fd247', '0x1a0b2d79ee58dbec5466d6c611fd6f5f065cf1ddd00c39a6086f86abbf']
(-)largest_factor_bitlen 0xe5
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=8)$
(+)factorization ['0x7', '0x8ef', '0x9e3', '0x99ab5b5f257', '0x74517ea73af69', '0x6128fc8a3759b914ff5d19cd1699bd4bd20e7a3fed']
(+)largest_factor_bitlen 0xa7
(-)factorization ['0x3', '0x3', '0x5', '0x1d', '0xc8e06ab738b1561e35c00c8e06ab738b155ea9ed163dca5ce4d7cd754fdf8820e4ac7']
(-)largest_factor_bitlen 0x114
$\text{torsion_extension}(l=2)$
least None
full None
relative None
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x2
full 0x6
relative 0x3
$\text{torsion_extension}(l=11)$
least 0x78
full 0x78
relative 0x1
$\text{torsion_extension}(l=13)$
least 0xa8
full 0xa8
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x30
full 0x30
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x20df8cd33e06d8eadfd349f7ab0620a499f3
factorization ['0x9e3b', '0x20e4245', '0xd4eb9e3', '0x1f1b58c676a614a2fa7']
$\text{conductor}(deg=3)$
ratio_sqrt 0x3c759948b007fb09347722a8155aae96db74435b143dbcaf586d23ee58a9649a413a357
factorization ['0x7', '0x11', '0xde41', '0x31d55dd24fcd6a7', '0x3019a109d9a765e0ce6f1a03a945b9b961e92cfa1da3abee837']
$\text{conductor}(deg=4)$
ratio_sqrt 0x183345456ebcf3139b60053edc9675a83200d4047e5672b134bdd5711de7af52ed2078d41afd2d777d83115910390902cfffeff0a95
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x2
complement_bit_length 0x2
$\text{class_number}()$
upper 0x14b2e541a08d75299ea200d5214e2ffdf22ea6
lower 0x2225a
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order 0x3ffffffffffffffffffffffffffffffffffef90399660fc938a90165b042a7cefadb306
complement_bit_length 0x1
$\text{small_prime_order}(l=5)$
order 0x1fffffffffffffffffffffffffffffffffff7c81ccb307e49c5480b2d82153e77d6d983
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0x666666666666666666666666666666666664c19f5bd67fa85aa8023c4d3772e4c491e7
complement_bit_length 0x4
$\text{small_prime_order}(l=11)$
order 0x3ffffffffffffffffffffffffffffffffffef90399660fc938a90165b042a7cefadb306
complement_bit_length 0x1
$\text{small_prime_order}(l=13)$
order 0x22222222222222222222222222222222222195dfc9477fe2c8e2ab696f127ba196db4d
complement_bit_length 0x5
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x2']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least None
full None
relative None
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=11)$
least 0xc
full 0xc
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0xe
full 0xe
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x12
relative 0x12
$\text{trace_factorization}(deg=1)$
trace 0x20df8cd33e06d8eadfd349f7ab0620a499f3
trace_factorization ['0x9e3b', '0x20e4245', '0xd4eb9e3', '0x1f1b58c676a614a2fa7']
number_of_factors 0x4
$\text{trace_factorization}(deg=2)$
trace 0x20df8cd33e06d8eadfd349f7ab0620a499f3
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x3
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x11a
expected 0x8d
ratio 0.5
$\text{hamming_x}(weight=2)$
x_coord_count 0x9ac5
expected 0x4def
ratio 0.50355
$\text{hamming_x}(weight=3)$
x_coord_count 0x386d28
expected 0x1c83f6
ratio 0.50536
$\text{square_4p1}()$
p 0x1
order 0x1
$\text{pow_distance}()$
distance 0x20df8cd33e06d8eadfd349f7ab0620a499f2
ratio 5.4270874313740014e+42
distance 32 0xe
distance 64 0xe
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{brainpool_overlap}()$
o None
$\text{weierstrass}()$
a None
b None