Curve detail

Definition

Name sect233r1 (nist/B-233, secg/sect233r1, x962/ansit233r1)
Category secg
Field Binary
Field polynomial $x^{233} + x^{74} + 1$
Field bits 233
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x000000000000000000000000000000000000000000000000000000000001
Param $b$ 0x0066647ede6c332c7f8c0923bb58213b333b20e9ce4281fe115f7d8f90ad
Generator $x$ 0x00fac9dfcbac8313bb2139f1bb755fef65bc391f8b36f8f8eb7371fd558b
Generator $y$ 0x01006a08a41903350678e58528bebf8a0beff867a7ca36716f7e01f81052
Simulation seed 0x74d59ff07f6b413d0ea14b344b20a2db049b50c3

Characteristics

Order 0x1000000000000000000000000000013e974e72f8a6922031d2603cfe0d7
Cofactor 0x2
$j$-invariant 0x9fc7d572facc759be39facf5bb89cbb8c3f2b63f723f4f57460600bf5e
Trace $t$ -0x27d2e9ce5f14d244063a4c079fc1ad

Traits

$\text{cofactor}()$
order 0x1000000000000000000000000000013e974e72f8a6922031d2603cfe0d7
cofactor 0x2
$\text{discriminant}()$
cm_disc -0x1ce0efeb2ea5a553eed56a0c8a4bca205c5305973c2190c7cfe6293b117
factorization ['0x7', '0x25f', '0x33ab00b639', '0xa488689bf7', '0xd69cf03f370ed4df158db869b94af7fca6d1']
max_conductor 0x1
$\text{twist_order}(deg=1)$
twist_cardinality 0x1ffffffffffffffffffffffffffffd82d1631a0eb2dbbf9c5b3f8603e54
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x4000000000000000000000000000000000000000000000000000000000231f1014d15a5aac112a95f375b435dfa3acfa68c3de6f383019d6c4eea
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x29', '0x47', '0x2d06c584b475239ddb3d78bea8ac616cb0652a923b78ec3ba6a73bb1']
(+)largest_factor_bitlen 0xde
(-)factorization ['0x3', '0x5', '0x5', '0x4f', '0x89', '0x15d', '0x841', '0x3ac7353f7f894a34875f936ab343ba06a56fb5b999ab54b95']
(-)largest_factor_bitlen 0xc2
$\text{kn_factorization}(k=2)$
(+)factorization ['0x3', '0x3', '0xb', '0x9ad', '0x128e01a4d', '0xebfc2a56a87fbafd3ec380f075d94c0fb56b001b0d1c07']
(+)largest_factor_bitlen 0xb8
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization ['0x7', '0x13', '0x17', '0x1d', '0x6d', '0x17c66c595a89a4a71', '0x70183c297838b71668240b5b573f4846b1941']
(+)largest_factor_bitlen 0x93
(-)factorization ['0x1faf', '0x8992188383f', '0x5a369e83852a1fff282c8032462010241feab4be03979']
(-)largest_factor_bitlen 0xb3
$\text{kn_factorization}(k=4)$
(+)factorization ['0x5', '0x2bcd8e198dc9', '0x141c9dc5409cc7', '0x7706f29e5cf3d5cd44a638bcec4116f99b']
(+)largest_factor_bitlen 0x87
(-)factorization ['0x3', '0x7', '0x7', '0x1b1', '0x268703', '0x36bb30baec1388c6bcffb2362d18741189a72e23af3fbd749f']
(-)largest_factor_bitlen 0xc6
$\text{kn_factorization}(k=5)$
(+)factorization ['0x3', '0x43', '0x21ccf4218d2015155', '0x47413e4085f1f45565', '0x15a90b15fb846b44f3ce9777']
(+)largest_factor_bitlen 0x5d
(-)factorization ['0x1f', '0x125ea3ae9', '0x1295212501b71', '0x3dee760aa8678137142c6f74217c1940afc0f3']
(-)largest_factor_bitlen 0x96
$\text{kn_factorization}(k=6)$
(+)factorization ['0xc0000000000000000000000000000eef17ad63a7ced98255dc82dbe8a15']
(+)largest_factor_bitlen 0xec
(-)factorization ['0x5', '0xd', '0x1522061eff', '0x23c846c975b8444d1f425c3c9c628f51fc87aad1f9d94bdad']
(-)largest_factor_bitlen 0xc2
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x3', '0x3', '0x11', '0x295', '0xf596a7', '0x326fc4c1330e3a90c2c6b7ab223b260e6639013570596ee51']
(-)largest_factor_bitlen 0xc2
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x1954681b7', '0x35e70639f41e4b9acb1048a1411b6bb4934f83f9e5795b6435d']
(+)largest_factor_bitlen 0xca
(-)factorization ['0x23c1bf', '0x2d97d201', '0x7b68f1365b', '0x33eae5bdc3132f9637', '0x19b2f82e308a550e66d5']
(-)largest_factor_bitlen 0x4d
$\text{torsion_extension}(l=2)$
least None
full None
relative None
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x2
full 0x4
relative 0x2
$\text{torsion_extension}(l=7)$
least 0x6
full 0x7
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x28
full 0x28
relative 0x1
$\text{torsion_extension}(l=13)$
least 0xa8
full 0xa8
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x10
full 0x10
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x27d2e9ce5f14d244063a4c079fc1ad
factorization ['0x13a41', '0x21523', '0x2fd9f9f1', '0x5356d07c67dd1f']
$\text{conductor}(deg=3)$
ratio_sqrt 0x431f1014d15a5aac112a95f375b435dfa3acfa68c3de6f383019d6c4ee9
factorization ['0x1f', '0x67', '0x6493f', '0x1a2f969', '0x4e4770526bb9ef', '0x1b5ee72faa6035be44929fcfca4510f9']
$\text{conductor}(deg=4)$
ratio_sqrt 0x576ab01f2a5c578169c19adbbbfab4ab8d19924e46a189fe04786b0c0c72d6284a58318d1520b35f6b65fc75
factorization ['0x3', '0x5', '0xb', '0x11', '0x17', '0x13a41', '0x21523', '0x2fd9f9f1', '0x113a47f519', '0x5356d07c67dd1f', '0xa91b8c273890688473f', '0x32290e7ca88a80f30da5815a225']
$\text{embedding}()$
embedding_degree_complement 0x2
complement_bit_length 0x2
$\text{class_number}()$
upper 0x45057c97fa2b6c87d7f2484225adab9
lower 0x40e919
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order 0x800000000000000000000000000009f4ba7397c53491018e9301e7f06b
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0x1000000000000000000000000000013e974e72f8a6922031d2603cfe0d6
complement_bit_length 0x1
$\text{small_prime_order}(l=7)$
order 0x1000000000000000000000000000013e974e72f8a6922031d2603cfe0d6
complement_bit_length 0x1
$\text{small_prime_order}(l=11)$
order 0x800000000000000000000000000009f4ba7397c53491018e9301e7f06b
complement_bit_length 0x2
$\text{small_prime_order}(l=13)$
order 0x800000000000000000000000000009f4ba7397c53491018e9301e7f06b
complement_bit_length 0x2
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x2']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x1', '0x2'], ['0x2', '0x1'], ['0x4', '0x2']]
len 0x3
$\text{volcano}(l=2)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least None
full None
relative None
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x1
full 0x4
relative 0x4
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x7
relative 0x7
$\text{isogeny_extension}(l=11)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0xe
full 0xe
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x4
relative 0x4
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x12
relative 0x12
$\text{trace_factorization}(deg=1)$
trace -0x27d2e9ce5f14d244063a4c079fc1ad
trace_factorization ['0x13a41', '0x21523', '0x2fd9f9f1', '0x5356d07c67dd1f']
number_of_factors 0x4
$\text{trace_factorization}(deg=2)$
trace -0x27d2e9ce5f14d244063a4c079fc1ad
trace_factorization ['0x3', '0x5', '0xb', '0x11', '0x17', '0x113a47f519', '0xa91b8c273890688473f', '0x32290e7ca88a80f30da5815a225']
number_of_factors 0x8
$\text{isogeny_neighbors}(l=2)$
len 0x3
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x2
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0xe9
expected 0x75
ratio 0.50215
$\text{hamming_x}(weight=2)$
x_coord_count 0x6994
expected 0x353e
ratio 0.50429
$\text{hamming_x}(weight=3)$
x_coord_count 0x1fc184
expected 0x10158c
ratio 0.50649
$\text{square_4p1}()$
p 0x1
order NO DATA (timed out)
$\text{pow_distance}()$
distance 0x27d2e9ce5f14d244063a4c079fc1ae
ratio 6.675532331333225e+34
distance 32 0xe
distance 64 0x12
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x0
$\text{brainpool_overlap}()$
o None
$\text{weierstrass}()$
a None
b None