Curve detail
Definition
| Name | sect163k1 (nist/K-163, secg/sect163k1, wtls/wap-wsg-idm-ecid-wtls3, x962/ansix9t163k1) |
|---|---|
| Category | secg |
| Field | Binary |
| Field polynomial | $x^{163} + x^{7} + x^{6} + x^{3} + 1$ |
| Field bits | 163 |
| Form | Weierstrass $y^2 = x^3 + ax + b$ |
| Param $a$ | 0x000000000000000000000000000000000000000001 |
| Param $b$ | 0x000000000000000000000000000000000000000001 |
| Generator $x$ | 0x02fe13c0537bbc11acaa07d793de4e6d5e5c94eee8 |
| Generator $y$ | 0x0289070fb05d38ff58321f2e800536d538ccdaa3d9 |
Characteristics
| Order | 0x4000000000000000000020108a2e0cc0d99f8a5ef |
| Cofactor | 0x2 |
| $j$-invariant | 0x1 |
| Trace $t$ | -0x4021145c1981b33f14bdd |
Traits
| $\text{cofactor}()$ | |
|---|---|
| order | 0x4000000000000000000020108a2e0cc0d99f8a5ef |
| cofactor | 0x2 |
| $\text{discriminant}()$ | |
| cm_disc | -0x7 |
| factorization | ['0x7', '0xb249', '0xb249', '0x140e9', '0x140e9', '0x836207', '0x836207', '0x35e17a1', '0x35e17a1'] |
| max_conductor | 0x18240aafba82a33aca077 |
| $\text{twist_order}(deg=1)$ | |
| twist_cardinality | 0x7fffffffffffffffffffbfdeeba3e67e4cc0eb424 |
| factorization | None |
| $\text{twist_order}(deg=2)$ | |
| twist_cardinality | 0x400000000000000000000000000000000000000000108e744e1df22e5c67883ca60ec07847fa953cca |
| factorization | None |
| $\text{kn_factorization}(k=1)$ | |
| (+)factorization | ['0x3', '0x3', '0xc1', '0x336b5bd94588ca1', '0x5debcf73233639a0bdc31107'] |
| (+)largest_factor_bitlen | 0x5f |
| (-)factorization | ['0x5', '0x5', '0x5', '0x5', '0x11c3', '0xd05ac7', '0x3a074fa39ba1d7d90ccaf0e3e35d39'] |
| (-)largest_factor_bitlen | 0x76 |
| $\text{kn_factorization}(k=2)$ | |
| (+)factorization | ['0x355', '0x47fdb9', '0x711db4d8728ecb', '0x26a4feae182a2adc7593'] |
| (+)largest_factor_bitlen | 0x4e |
| (-)factorization | ['0x3', '0x13', '0x17', '0x25', '0xb3', '0x1eea7aeea8b3c4f879ff03eb1aa21cf348bb'] |
| (-)largest_factor_bitlen | 0x8d |
| $\text{kn_factorization}(k=3)$ | |
| (+)factorization | ['0x7', '0x7', '0x755', '0x3da30f31d', '0x1557014a9b', '0x3541346049fb5955b231'] |
| (+)largest_factor_bitlen | 0x4e |
| (-)factorization | ['0x3dc79', '0xb5dd5', '0x351e03f', '0x12357d853', '0x3aeedec9f', '0xa0f3f3def'] |
| (-)largest_factor_bitlen | 0x24 |
| $\text{kn_factorization}(k=4)$ | |
| (+)factorization | ['0x3', '0x5', '0x25e11', '0x4303a3', '0x1aa3ceb0df', '0x21145c57f63061390e93d3'] |
| (+)largest_factor_bitlen | 0x56 |
| (-)factorization | ['0x7', '0xb', '0x4173a26cdc6960b5', '0x1a01ea454ae95a7d0dca4a867'] |
| (-)largest_factor_bitlen | 0x61 |
| $\text{kn_factorization}(k=5)$ | |
| (+)factorization | ['0x4f', '0x65', '0xf07', '0xb23cfc3', '0x30082077b', '0x7c5ac99d9', '0x15889e3f833b'] |
| (+)largest_factor_bitlen | 0x2d |
| (-)factorization | ['0x3', '0xd', '0x11', '0x1cd', '0x2cf', '0x10dff', '0x159c1', '0x5e452ba6996d', '0x5d261a13248d00b'] |
| (-)largest_factor_bitlen | 0x3b |
| $\text{kn_factorization}(k=6)$ | |
| (+)factorization | ['0xe3', '0x76f0f', '0x2029b40ecad', '0x39f5be16665cd0245c67356cd'] |
| (+)largest_factor_bitlen | 0x62 |
| (-)factorization | ['0x5', '0x1c45', '0xad1461f513b7cb65b', '0x80957b0df5d35cd914c31'] |
| (-)largest_factor_bitlen | 0x54 |
| $\text{kn_factorization}(k=7)$ | |
| (+)factorization | ['0x3', '0xb', '0xb', '0x89f', '0x118d477', '0x42d0b3a1bdb38e72b75b6a4496ba691'] |
| (+)largest_factor_bitlen | 0x7b |
| (-)factorization | ['0x917ed', '0x259c1113', '0x29eafcab01b404155c61f259ebd397'] |
| (-)largest_factor_bitlen | 0x76 |
| $\text{kn_factorization}(k=8)$ | |
| (+)factorization | ['0xd', '0x16b72ea8ed', '0xb86f9f5b26e17e9', '0x4d0292f1bd95f9fc1'] |
| (+)largest_factor_bitlen | 0x43 |
| (-)factorization | ['0x3', '0x3', '0x3', '0x3', '0x53', '0x13d', '0xf267b', '0x11b5b64b6b7', '0x1e0b5638846b0f4ef9c7cd'] |
| (-)largest_factor_bitlen | 0x55 |
| $\text{torsion_extension}(l=2)$ | |
| least | None |
| full | None |
| relative | None |
| $\text{torsion_extension}(l=3)$ | |
| least | 0x8 |
| full | 0x8 |
| relative | 0x1 |
| $\text{torsion_extension}(l=5)$ | |
| least | 0x18 |
| full | 0x18 |
| relative | 0x1 |
| $\text{torsion_extension}(l=7)$ | |
| least | 0x3 |
| full | 0x7 |
| relative | 0x2 |
| $\text{torsion_extension}(l=11)$ | |
| least | 0x5 |
| full | 0xa |
| relative | 0x2 |
| $\text{torsion_extension}(l=13)$ | |
| least | 0xa8 |
| full | 0xa8 |
| relative | 0x1 |
| $\text{torsion_extension}(l=17)$ | |
| least | 0x90 |
| full | 0x90 |
| relative | 0x1 |
| $\text{conductor}(deg=2)$ | |
| ratio_sqrt | 0x4021145c1981b33f14bdd |
| factorization | ['0x24b44688a7', '0x1bf47d9a13db'] |
| $\text{conductor}(deg=3)$ | |
| ratio_sqrt | 0x8108e744e1df22e5c67883ca60ec07847fa953cc9 |
| factorization | ['0xf47', '0x46b724db9', '0x80c412a1dba8a1', '0x3cc9f207cab08a07'] |
| $\text{conductor}(deg=4)$ | |
| ratio_sqrt | 0x425c0c19b7c9af4ae75ac74fcfdc82a9284e23b16872bc714f5a4fdd5c85 |
| factorization | ['0x3', '0x28d', '0x98cf', '0x14957b', '0x10e3402d', '0x24b44688a7', '0x1bf47d9a13db', '0x2ab5b1740880911506e9f'] |
| $\text{embedding}()$ | |
| embedding_degree_complement | 0x146 |
| complement_bit_length | 0x9 |
| $\text{class_number}()$ | |
| upper | 0x2 |
| lower | 0x0 |
| $\text{small_prime_order}(l=2)$ | |
| order | None |
| complement_bit_length | None |
| $\text{small_prime_order}(l=3)$ | |
| order | 0x4000000000000000000020108a2e0cc0d99f8a5ee |
| complement_bit_length | 0x1 |
| $\text{small_prime_order}(l=5)$ | |
| order | 0x4000000000000000000020108a2e0cc0d99f8a5ee |
| complement_bit_length | 0x1 |
| $\text{small_prime_order}(l=7)$ | |
| order | 0x4000000000000000000020108a2e0cc0d99f8a5ee |
| complement_bit_length | 0x1 |
| $\text{small_prime_order}(l=11)$ | |
| order | 0xaaaaaaaaaaaaaaaaaaab002c1b25775799a970fd |
| complement_bit_length | 0x3 |
| $\text{small_prime_order}(l=13)$ | |
| order | 0x200000000000000000001008451706606ccfc52f7 |
| complement_bit_length | 0x2 |
| $\text{division_polynomials}(l=2)$ | |
| factorization | [['0x1', '0x2']] |
| len | 0x1 |
| $\text{division_polynomials}(l=3)$ | |
| factorization | [['0x4', '0x1']] |
| len | 0x1 |
| $\text{division_polynomials}(l=5)$ | |
| factorization | [['0xc', '0x1']] |
| len | 0x1 |
| $\text{volcano}(l=2)$ | |
| crater_degree | 0x2 |
| depth | 0x0 |
| $\text{volcano}(l=3)$ | |
| crater_degree | 0x0 |
| depth | 0x0 |
| $\text{volcano}(l=5)$ | |
| crater_degree | 0x0 |
| depth | 0x0 |
| $\text{volcano}(l=7)$ | |
| crater_degree | 0x1 |
| depth | 0x0 |
| $\text{volcano}(l=11)$ | |
| crater_degree | 0x2 |
| depth | 0x0 |
| $\text{volcano}(l=13)$ | |
| crater_degree | 0x0 |
| depth | 0x0 |
| $\text{volcano}(l=17)$ | |
| crater_degree | 0x0 |
| depth | 0x0 |
| $\text{volcano}(l=19)$ | |
| crater_degree | 0x0 |
| depth | 0x0 |
| $\text{isogeny_extension}(l=2)$ | |
| least | None |
| full | None |
| relative | None |
| $\text{isogeny_extension}(l=3)$ | |
| least | 0x4 |
| full | 0x4 |
| relative | 0x1 |
| $\text{isogeny_extension}(l=5)$ | |
| least | 0x6 |
| full | 0x6 |
| relative | 0x1 |
| $\text{isogeny_extension}(l=7)$ | |
| least | 0x1 |
| full | 0x7 |
| relative | 0x7 |
| $\text{isogeny_extension}(l=11)$ | |
| least | 0x1 |
| full | 0xa |
| relative | 0xa |
| $\text{isogeny_extension}(l=13)$ | |
| least | 0xe |
| full | 0xe |
| relative | 0x1 |
| $\text{isogeny_extension}(l=17)$ | |
| least | 0x9 |
| full | 0x9 |
| relative | 0x1 |
| $\text{isogeny_extension}(l=19)$ | |
| least | 0x14 |
| full | 0x14 |
| relative | 0x1 |
| $\text{trace_factorization}(deg=1)$ | |
| trace | -0x4021145c1981b33f14bdd |
| trace_factorization | ['0x24b44688a7', '0x1bf47d9a13db'] |
| number_of_factors | 0x2 |
| $\text{trace_factorization}(deg=2)$ | |
| trace | -0x4021145c1981b33f14bdd |
| trace_factorization | ['0x3', '0x28d', '0x98cf', '0x14957b', '0x10e3402d', '0x2ab5b1740880911506e9f'] |
| number_of_factors | 0x6 |
| $\text{isogeny_neighbors}(l=2)$ | |
| len | 0x3 |
| $\text{isogeny_neighbors}(l=3)$ | |
| len | 0x0 |
| $\text{isogeny_neighbors}(l=5)$ | |
| len | 0x0 |
| $\text{q_torsion}()$ | |
| Q_torsion | 0x1 |
| $\text{hamming_x}(weight=1)$ | |
| x_coord_count | 0xa3 |
| expected | 0x52 |
| ratio | 0.50307 |
| $\text{hamming_x}(weight=2)$ | |
| x_coord_count | 0x3393 |
| expected | 0x1a1b |
| ratio | 0.50617 |
| $\text{hamming_x}(weight=3)$ | |
| x_coord_count | 0xacfd1 |
| expected | 0x581b2 |
| ratio | 0.50932 |
| $\text{square_4p1}()$ | |
| p | 0x1 |
| order | 0x1 |
| $\text{pow_distance}()$ | |
| distance | 0x4021145c1981b33f14bde |
| ratio | 2.4129797985049123e+24 |
| distance 32 | 0x2 |
| distance 64 | 0x1e |
| $\text{multiples_x}(k=1)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=2)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=3)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=4)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=5)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=6)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=7)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=8)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=9)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=10)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{x962_invariant}()$ | |
| r | 0x0 |
| $\text{brainpool_overlap}()$ | |
| o | 0x1 |
| $\text{weierstrass}()$ | |
| a | 0x1 |
| b | 0x1 |