Curve detail
Definition
| Name | sect113r1 (secg/sect113r1, wtls/wap-wsg-idm-ecid-wtls4) |
|---|---|
| Category | secg |
| Field | Binary |
| Field polynomial | $x^{113} + x^{9} + 1$ |
| Field bits | 113 |
| Form | Weierstrass $y^2 = x^3 + ax + b$ |
| Param $a$ | 0x003088250ca6e7c7fe649ce85820f7 |
| Param $b$ | 0x00e8bee4d3e2260744188be0e9c723 |
| Generator $x$ | 0x009d73616f35f4ab1407d73562c10f |
| Generator $y$ | 0x00a52830277958ee84d1315ed31886 |
Characteristics
| Order | 0x100000000000000d9ccec8a39e56f |
| Cofactor | 0x2 |
| $j$-invariant | 0x6942e38fc45c62366c09aa8204cd |
| Trace $t$ | -0x1b399d91473cadd |
Traits
| $\text{cofactor}()$ | |
|---|---|
| order | 0x100000000000000d9ccec8a39e56f |
| cofactor | 0x2 |
| $\text{discriminant}()$ | |
| cm_disc | -0x51acbcbcf4bf67e859f4394b07d37 |
| factorization | ['0x7', '0x2f', '0x18892f79', '0x297162885b62c9ed33b7'] |
| max_conductor | 0x1 |
| $\text{twist_order}(deg=1)$ | |
| twist_cardinality | 0x1fffffffffffffe4c6626eb8c3524 |
| factorization | None |
| $\text{twist_order}(deg=2)$ | |
| twist_cardinality | 0x3fffffffffffffffffffffffffffee5343430b409817a60bc6b4f82ca |
| factorization | None |
| $\text{kn_factorization}(k=1)$ | |
| (+)factorization | ['0x202c829afb', '0xfe9dd7c4efe1a3e0a6d'] |
| (+)largest_factor_bitlen | 0x4c |
| (-)factorization | ['0x3', '0x5', '0x4e49b60ac13b01', '0x6f9d860de0b953'] |
| (-)largest_factor_bitlen | 0x37 |
| $\text{kn_factorization}(k=2)$ | |
| (+)factorization | ['0x3', '0x3', '0x3', '0x3', '0xd', '0x1d', '0x1f', '0xf711e1ef5', '0x49741371fbfb37f'] |
| (+)largest_factor_bitlen | 0x3b |
| (-)factorization | ['0x241', '0xab695', '0xc00e3', '0x3886f9bfc2e1611a5'] |
| (-)largest_factor_bitlen | 0x42 |
| $\text{kn_factorization}(k=3)$ | |
| (+)factorization | ['0x7', '0xb', '0x963d', '0xa9b3b', '0x33469fe38250f72df09'] |
| (+)largest_factor_bitlen | 0x4a |
| (-)factorization | ['0x11', '0x16f74b', '0x10e0911', '0x3bacf0627c4b64dcb'] |
| (-)largest_factor_bitlen | 0x42 |
| $\text{kn_factorization}(k=4)$ | |
| (+)factorization | ['0x5', '0x5', '0x5', '0x5', '0x346dc5d6388659778ff57602d89'] |
| (+)largest_factor_bitlen | 0x6a |
| (-)factorization | ['0x3', '0x7', '0x7', '0x25', '0x2f', '0x2fca7', '0x6601e14c9', '0x1b9241934099'] |
| (-)largest_factor_bitlen | 0x2d |
| $\text{kn_factorization}(k=5)$ | |
| (+)factorization | ['0x3', '0x18d', '0x14615', '0x1afff5e53efb467cf2108cd'] |
| (+)largest_factor_bitlen | 0x59 |
| (-)factorization | ['0x65', '0x2a1', '0x9a437b986df1658c6e3e5ea91'] |
| (-)largest_factor_bitlen | 0x64 |
| $\text{kn_factorization}(k=6)$ | |
| (+)factorization | ['0x3b', '0x59', '0x34c9', '0x293f9479', '0x119bf7359cd164e7'] |
| (+)largest_factor_bitlen | 0x3d |
| (-)factorization | ['0x5', '0x10d', '0x248b532d1bfaabcda0c63722573'] |
| (-)largest_factor_bitlen | 0x6a |
| $\text{kn_factorization}(k=7)$ | |
| (+)factorization | ['0x757', '0x29093', '0xbe6313729a2147f407b1e7'] |
| (+)largest_factor_bitlen | 0x58 |
| (-)factorization | ['0x3', '0x3', '0x1849', '0xdd6efd', '0x2607e3eb1', '0x7f9c362ba65'] |
| (-)largest_factor_bitlen | 0x2b |
| $\text{kn_factorization}(k=8)$ | |
| (+)factorization | ['0x3', '0x4f', '0x5db', '0xfe9', '0xd802a401', '0x3848920b456877'] |
| (+)largest_factor_bitlen | 0x36 |
| (-)factorization | ['0xb', '0x17', '0x29b615d', '0x96e02b5ca5', '0xa898866430b'] |
| (-)largest_factor_bitlen | 0x2c |
| $\text{torsion_extension}(l=2)$ | |
| least | None |
| full | None |
| relative | None |
| $\text{torsion_extension}(l=3)$ | |
| least | 0x8 |
| full | 0x8 |
| relative | 0x1 |
| $\text{torsion_extension}(l=5)$ | |
| least | 0x2 |
| full | 0x4 |
| relative | 0x2 |
| $\text{torsion_extension}(l=7)$ | |
| least | 0x6 |
| full | 0x7 |
| relative | 0x1 |
| $\text{torsion_extension}(l=11)$ | |
| least | 0x2 |
| full | 0xa |
| relative | 0x5 |
| $\text{torsion_extension}(l=13)$ | |
| least | 0x3 |
| full | 0xc |
| relative | 0x4 |
| $\text{torsion_extension}(l=17)$ | |
| least | 0x2 |
| full | 0x8 |
| relative | 0x4 |
| $\text{conductor}(deg=2)$ | |
| ratio_sqrt | 0x1b399d91473cadd |
| factorization | ['0x159f0cb', '0x1425985f7'] |
| $\text{conductor}(deg=3)$ | |
| ratio_sqrt | 0xe5343430b409817a60bc6b4f82c9 |
| factorization | ['0x46f9', '0x1d7c94a507e9', '0x1c09b46090aa29'] |
| $\text{conductor}(deg=4)$ | |
| ratio_sqrt | 0x1e1323eeb649088636ba0cb6623c4e4685a2ade7e7b |
| factorization | ['0x3', '0x5', '0x2b', '0x611', '0x349d', '0x120e9', '0x159f0cb', '0x32ab69bf', '0x1425985f7', '0x193077a01'] |
| $\text{embedding}()$ | |
| embedding_degree_complement | 0x2 |
| complement_bit_length | 0x2 |
| $\text{class_number}()$ | |
| upper | 0x3900ee93cb8f66b7 |
| lower | 0x9ab |
| $\text{small_prime_order}(l=2)$ | |
| order | None |
| complement_bit_length | None |
| $\text{small_prime_order}(l=3)$ | |
| order | 0x800000000000006ce676451cf2b7 |
| complement_bit_length | 0x2 |
| $\text{small_prime_order}(l=5)$ | |
| order | 0x100000000000000d9ccec8a39e56e |
| complement_bit_length | 0x1 |
| $\text{small_prime_order}(l=7)$ | |
| order | 0x100000000000000d9ccec8a39e56e |
| complement_bit_length | 0x1 |
| $\text{small_prime_order}(l=11)$ | |
| order | 0x100000000000000d9ccec8a39e56e |
| complement_bit_length | 0x1 |
| $\text{small_prime_order}(l=13)$ | |
| order | 0x800000000000006ce676451cf2b7 |
| complement_bit_length | 0x2 |
| $\text{division_polynomials}(l=2)$ | |
| factorization | [['0x1', '0x2']] |
| len | 0x1 |
| $\text{division_polynomials}(l=3)$ | |
| factorization | [['0x4', '0x1']] |
| len | 0x1 |
| $\text{division_polynomials}(l=5)$ | |
| factorization | [['0x1', '0x2'], ['0x2', '0x1'], ['0x4', '0x2']] |
| len | 0x3 |
| $\text{volcano}(l=2)$ | |
| crater_degree | 0x2 |
| depth | 0x0 |
| $\text{volcano}(l=3)$ | |
| crater_degree | 0x0 |
| depth | 0x0 |
| $\text{volcano}(l=5)$ | |
| crater_degree | 0x2 |
| depth | 0x0 |
| $\text{volcano}(l=7)$ | |
| crater_degree | 0x1 |
| depth | 0x0 |
| $\text{volcano}(l=11)$ | |
| crater_degree | 0x2 |
| depth | 0x0 |
| $\text{volcano}(l=13)$ | |
| crater_degree | 0x2 |
| depth | 0x0 |
| $\text{volcano}(l=17)$ | |
| crater_degree | 0x2 |
| depth | 0x0 |
| $\text{volcano}(l=19)$ | |
| crater_degree | 0x0 |
| depth | 0x0 |
| $\text{isogeny_extension}(l=2)$ | |
| least | None |
| full | None |
| relative | None |
| $\text{isogeny_extension}(l=3)$ | |
| least | 0x4 |
| full | 0x4 |
| relative | 0x1 |
| $\text{isogeny_extension}(l=5)$ | |
| least | 0x1 |
| full | 0x4 |
| relative | 0x4 |
| $\text{isogeny_extension}(l=7)$ | |
| least | 0x1 |
| full | 0x7 |
| relative | 0x7 |
| $\text{isogeny_extension}(l=11)$ | |
| least | 0x1 |
| full | 0xa |
| relative | 0xa |
| $\text{isogeny_extension}(l=13)$ | |
| least | 0x1 |
| full | 0xc |
| relative | 0xc |
| $\text{isogeny_extension}(l=17)$ | |
| least | 0x1 |
| full | 0x8 |
| relative | 0x8 |
| $\text{isogeny_extension}(l=19)$ | |
| least | 0x14 |
| full | 0x14 |
| relative | 0x1 |
| $\text{trace_factorization}(deg=1)$ | |
| trace | -0x1b399d91473cadd |
| trace_factorization | ['0x159f0cb', '0x1425985f7'] |
| number_of_factors | 0x2 |
| $\text{trace_factorization}(deg=2)$ | |
| trace | -0x1b399d91473cadd |
| trace_factorization | ['0x3', '0x5', '0x2b', '0x611', '0x349d', '0x120e9', '0x32ab69bf', '0x193077a01'] |
| number_of_factors | 0x8 |
| $\text{isogeny_neighbors}(l=2)$ | |
| len | 0x3 |
| $\text{isogeny_neighbors}(l=3)$ | |
| len | 0x0 |
| $\text{isogeny_neighbors}(l=5)$ | |
| len | 0x2 |
| $\text{q_torsion}()$ | |
| Q_torsion | 0x1 |
| $\text{hamming_x}(weight=1)$ | |
| x_coord_count | 0x71 |
| expected | 0x39 |
| ratio | 0.50442 |
| $\text{hamming_x}(weight=2)$ | |
| x_coord_count | 0x18b8 |
| expected | 0xc94 |
| ratio | 0.50885 |
| $\text{hamming_x}(weight=3)$ | |
| x_coord_count | 0x39298 |
| expected | 0x1d5a8 |
| ratio | 0.51351 |
| $\text{square_4p1}()$ | |
| p | 0x1 |
| order | 0x1 |
| $\text{pow_distance}()$ | |
| distance | 0x1b399d91473cade |
| ratio | 8.469560631090237e+16 |
| distance 32 | 0x2 |
| distance 64 | 0x1e |
| $\text{multiples_x}(k=1)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=2)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=3)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=4)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=5)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=6)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=7)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=8)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=9)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{multiples_x}(k=10)$ | |
| Hx | None |
| bits | None |
| difference | None |
| ratio | None |
| $\text{x962_invariant}()$ | |
| r | 0x0 |
| $\text{brainpool_overlap}()$ | |
| o | None |
| $\text{weierstrass}()$ | |
| a | None |
| b | None |