Curve detail

Definition

Name secp256r1 (nist/P-256, secg/secp256r1, x962/ansix9p256r1)
Category secg
Description A randomly generated curve. [SEC2v1](https://www.secg.org/SEC2-Ver-1.0.pdf) states 'E was chosen verifiably at random as specified in ANSI X9.62 [1] from the seed'.
Field Prime (0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff)
Field bits 256
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc
Param $b$ 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
Generator $x$ 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296
Generator $y$ 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5
Simulation seed 0xc49d360886e704936a6678e1139d26b7819f7e90

Characteristics

Order 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
Cofactor 0x1
$j$-invariant 0x1198954424ebb0f8479de43131caece8ee0a9b13a558c21e0b2f74e3fcd36aa3
Trace $t$ 0x4319055358e8617b0c46353d039cdaaf
Embedding degree $k$ 0x555555550000000055555555555555553ef7a8e48d07df81a693439654210c70
CM discriminant -0x3ee69e4c05512a2feb42c40318a014ae4c618ec481b963d8454f2455ea5e97c5b

Traits

$\text{cofactor}()$
order 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
cofactor 0x1
$\text{discriminant}()$
cm_disc NO DATA (timed out)
factorization NO DATA (timed out)
max_conductor NO DATA (timed out)
$\text{twist_order}(deg=1)$
twist_cardinality 0xffffffff0000000100000000000000004319055458e8617b0c46353d039cdaaf
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfffffffe00000002fffffffe0000000100000001fffffffe00000001fffffffc11961b3faaed5d024bd3bfce75feb51b39e713b7e469c27bab0dbaa15a1683a5
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x5', '0x757', '0xa82b2cb', '0x54f36f23a5ecfa8925ac64ae11bc09513b09aa3f8eb3ce85b0e639']
(+)largest_factor_bitlen 0xd7
(-)factorization ['0x2', '0x2', '0x2', '0x2', '0x3', '0x47', '0x83', '0x175', '0xd4f', '0x4429', '0x952d', '0xb25b1dd', '0x251a76f7', '0xe95f681f97', '0x87b23e9d09d3e637b2aa341']
(-)largest_factor_bitlen 0x5c
$\text{kn_factorization}(k=2)$
(+)factorization ['0x3', '0x7', '0x3d', '0x137', '0x8c3', '0x2a01', '0x6b68d', '0xc97d9a354bf5', '0xb1699499589d22d4adda5bb70818c886cd157']
(+)largest_factor_bitlen 0x94
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen -
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x2', '0xb', '0x1e4d', '0x1dbeeac3fa9', '0x395937786cb77', '0x16215b8373df9161470dfd317fd72ff822af5d']
(+)largest_factor_bitlen 0x95
(-)factorization ['0x2', '0x43', '0x36d', '0x8225', '0x534bb', '0x435282a27', '0x2675c37c99adb759dfea42c9f841fde1e2142545978f']
(-)largest_factor_bitlen 0xae
$\text{kn_factorization}(k=4)$
(+)factorization ['0x59', '0x19f97', '0x11a4d318e08b537aa7', '0x66d532e490696da5b673606152fbc78dc1cf5d3b4d']
(+)largest_factor_bitlen 0xa7
(-)factorization ['0x3', '0x3', '0x3', '0x3', '0x5', '0x5', '0x11', '0x268c9', '0x4b280255', '0xac40c13db08da198c5f74d4d58c180d335548adbb10102637']
(-)largest_factor_bitlen 0xc4
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization ['0x2', '0x2', '0x7', '0x2db6db6d8924924952492492492492491896f5e826fb132a06f3767e3f5ad8f3']
(-)largest_factor_bitlen 0xfe
$\text{kn_factorization}(k=6)$
(+)factorization ['0x5', '0xc7', '0x20c65ba73574c12ea0d', '0xc0ecb10a2031d78bdf2e5f92b203d602ef3e05a60da1']
(+)largest_factor_bitlen 0xb0
(-)factorization ['0x335', '0x9ef', '0x4f09', '0xc7fd', '0xd780f55', '0xed7a2704e1d77c42c238a35e316b21a110a5e9c8da5e7']
(-)largest_factor_bitlen 0xb4
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen -
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x87526b57548f5f', '0x50b75584a2b6152ec0ef7287c0c464bc74fa0b9c1250b88725d']
(+)largest_factor_bitlen 0xcb
(-)factorization ['0xb', '0xd', '0x5cfc4c1', '0x24b4522f791', '0x1130146b9f096f028c8e2f533f878df891ba22c278aa0b9']
(-)largest_factor_bitlen 0xb9
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x2
full 0x3
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x2
full 0x5
relative 0x2
$\text{torsion_extension}(l=7)$
least 0x10
full 0x10
relative 0x1
$\text{torsion_extension}(l=11)$
least 0xa
full 0xa
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x2
full 0x4
relative 0x2
$\text{torsion_extension}(l=17)$
least 0x8
full 0x8
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x4319055358e8617b0c46353d039cdaaf
factorization ['0x71', '0x9d9', '0x31a9', '0x34a4df', '0x182f43483a7c4142681']
$\text{conductor}(deg=3)$
ratio_sqrt 0xee69e4c35512a2fbb42c40318a014ae4c618ec451b963d8454f2455ea5e97c5e
factorization ['0x2', '0x3', '0x3', '0x3', '0x46a41ddb0fb9ab8cf303a13e15ed6b8627bb8860540696f7cd5143f61e3237d']
$\text{conductor}(deg=4)$
ratio_sqrt 0x8196097f3cc05902e1ad8f9771e9338bde532980b8ab04f543f5b04840e607ddfeb160257f0ec580ff1ebee21e2f3593
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x3
complement_bit_length 0x2
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e3192a8
complement_bit_length 0x2
$\text{small_prime_order}(l=3)$
order 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e3192a8
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf18c954
complement_bit_length 0x3
$\text{small_prime_order}(l=7)$
order 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632550
complement_bit_length 0x1
$\text{small_prime_order}(l=11)$
order 0x1f44659e2afe0bb9c55fc17734c36b7b151e2a57a6f91d21d3822c4e885a470
complement_bit_length 0x8
$\text{small_prime_order}(l=13)$
order 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632550
complement_bit_length 0x1
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x1', '0x1'], ['0x3', '0x1']]
len 0x2
$\text{division_polynomials}(l=5)$
factorization [['0x1', '0x2'], ['0x5', '0x2']]
len 0x2
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=5)$
least 0x1
full 0x5
relative 0x5
$\text{isogeny_extension}(l=7)$
least 0x8
full 0x8
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x1
full 0x5
relative 0x5
$\text{isogeny_extension}(l=13)$
least 0x1
full 0x4
relative 0x4
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x4
relative 0x4
$\text{isogeny_extension}(l=19)$
least 0xa
full 0xa
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x4319055358e8617b0c46353d039cdaaf
trace_factorization ['0x71', '0x9d9', '0x31a9', '0x34a4df', '0x182f43483a7c4142681']
number_of_factors 0x5
$\text{trace_factorization}(deg=2)$
trace 0x4319055358e8617b0c46353d039cdaaf
trace_factorization ['0xd', '0xd', '0x11', '0x22d', '0x347', '0x63ba7d8447f3c5a242d', '0xfdbed80940504f03ce2dea3c81c3d52f70949b']
number_of_factors 0x6
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x1
$\text{isogeny_neighbors}(l=5)$
len 0x1
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x6f
expected 0x80
ratio 1.15315
$\text{hamming_x}(weight=2)$
x_coord_count 0x3fb0
expected 0x3fc0
ratio 1.00098
$\text{hamming_x}(weight=3)$
x_coord_count 0x151a1e
expected 0x151580
ratio 0.99915
$\text{square_4p1}()$
p 0x1
order 0x2d
$\text{pow_distance}()$
distance 0xffffffff00000000000000004319055258e8617b0c46353d039cdaaf
ratio 4294967296.0
distance 32 0xf
distance 64 0x11
$\text{multiples_x}(k=1)$
Hx 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=2)$
Hx 0x2afa386b3f2bdcdb83f4d83f8fa3874d7b74dcb454bd644fdd6bf3d1f2da8db6
bits 0xfe
difference 0x2
ratio 0.99219
$\text{multiples_x}(k=3)$
Hx 0x517d3f033d9b7d1994d200de245f8952bf5ac043d4014ca9af9ec20fee5119c8
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=4)$
Hx 0x7469a88fab79ae982fa880b0b940b96c6108eaec0473e2f530a861fa608f682
bits 0xfb
difference 0x5
ratio 0.98047
$\text{multiples_x}(k=5)$
Hx 0xdd93b1e4509ea37ed90a5b197bca89a5c65da7ba0e3c2c23e7ac3eb46d52152f
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=6)$
Hx 0x6001ec1f28982a022b84f8c54c387ae3bcc973841387f970c6423a040af826c0
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=7)$
Hx 0x304ff48b33b91e996e61e2c08fd7860b9f2dc7bb53d8648180a1ae4e51b6af92
bits 0xfe
difference 0x2
ratio 0.99219
$\text{multiples_x}(k=8)$
Hx 0x55998956742784829dca12de6a988ea385db1548366a5131359ae2fd09295726
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=9)$
Hx 0x49117e29c86afaf76eedac66f8aaa4da7cdc6028abcfd5b80cb3eaa85e14dd32
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=10)$
Hx 0xcdff6117e7a67ec6c45ece48e0dc99135bd0e5ec02df5f70964157c41eb6773d
bits 0x100
difference 0x0
ratio 1.0
$\text{x962_invariant}()$
r 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0d
$\text{brainpool_overlap}()$
o 0x2539ca2755c56c184c1442a7
$\text{weierstrass}()$
a 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc
b 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b