Curve detail

Definition

Name secp256k1
Category secg
Description A Koblitz curve.
Field Prime (0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f)
Field bits 256
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x0000000000000000000000000000000000000000000000000000000000000000
Param $b$ 0x0000000000000000000000000000000000000000000000000000000000000007
Generator $x$ 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Generator $y$ 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

Characteristics

Order 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
Cofactor 0x1
$j$-invariant 0x0
Trace $t$ 0x14551231950b75fc4402da1722fc9baef
Embedding degree $k$ 0x2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa74727a26728c1ab49ff8651778090ae0
CM discriminant -0x3

Traits

$\text{cofactor}()$
order 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
cofactor 0x1
$\text{discriminant}()$
cm_disc -0x3
factorization ['0x3', '0x3', '0x3', '0x4f', '0x4f', '0x15d', '0x15d', '0x292b71', '0x292b71', '0x4649e5c33cf48540a57d66b', '0x4649e5c33cf48540a57d66b']
max_conductor 0xe4437ed6010e88286f547fa90abfe4c3
$\text{twist_order}(deg=1)$
twist_cardinality 0x1000000000000000000000000000000014551231950b75fc4402da1712fc9b71f
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffdfffff85d9d671cd581c69bc5e697f5e1d12ab7e202a91318c7301d668dbcd41ad5dcc365
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0xd', '0x53', '0xb2b7', '0x7c7b7', '0x597660d4cfa74f61a5ae7dcc4ca77c896e38fbee15d8add64c237']
(+)largest_factor_bitlen 0xd3
(-)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x2', '0x3', '0x95', '0x277', '0x17d6cfb8ee30c51', '0x978c6f353c3889a79', '0x10dbff26eab8198050172ee03275']
(-)largest_factor_bitlen 0x6d
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization ['0x1e6354fd', '0x3927d2df', '0x4b77324461ee2e7c353b7c8513203d859582d612d138593acb']
(-)largest_factor_bitlen 0xc7
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization ['0x2', '0x5', '0x17', '0x2b', '0x97', '0xf3a2e3', '0x10c2ca9', '0x8d55ec35b6704955', '0x3d3b54e9734cf42ec4daaca05a6541a1']
(-)largest_factor_bitlen 0x7e
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization ['0x3', '0x3', '0xb', '0x7901', '0x7a1b', '0x8df5ab', '0x419958f8c40cf26b', '0x142dec32810085788587eff071301d6268b']
(-)largest_factor_bitlen 0x89
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x3', '0x3', '0x293', '0xa63', '0xe1d', '0x2ba5', '0x491a39d', '0x537a3d57c23db9', '0xbdee2b5096c10674be338ca12fe86a07']
(+)largest_factor_bitlen 0x80
(-)factorization ['0x2', '0x2', '0x7', '0x11', '0x411bf', '0x51fd372907c1fea5', '0x2103530e7c94c2db72eb05d06bb131da01a1f104415']
(-)largest_factor_bitlen 0xaa
$\text{kn_factorization}(k=6)$
(+)factorization ['0x1d', '0xc1', '0x119', '0x16055', '0x2c68f', '0x10c135f76aa6952586fb084c54b224a5899410fca1a73c0ec391']
(+)largest_factor_bitlen 0xcd
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen -
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x2', '0x2', '0x5', '0xb', '0x13', '0x2bd', '0x1e1be9bf', '0xd94c2efaa2f', '0x688e4ee4ab299', '0x1eb7d07bfcf31a6a78d79a0193df1']
(+)largest_factor_bitlen 0x71
(-)factorization ['0x2', '0x3', '0x1f', '0x4d5', '0x5ee08b', '0x11064e589cd', '0x50e5cd9025c4ded34fa881eac6a3a6b654fce679d51cd']
(-)largest_factor_bitlen 0xb3
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x13df', '0xa4b85', '0x25d0e731349', '0x169727245f10d0477f83440599fc9d05fccb75844313e31']
(+)largest_factor_bitlen 0xb9
(-)factorization ['0x5', '0x9a0454a1', '0x5f0bf78d071269232374d', '0x729b998516ad72a0e60b8d1683dfde269627']
(-)largest_factor_bitlen 0x8f
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x28
full 0x28
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x2
full 0x4
relative 0x2
$\text{torsion_extension}(l=17)$
least 0x30
full 0x30
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x14551231950b75fc4402da1722fc9baef
factorization ['0x2a1', '0x7bbf018f252b819f7a2bfbfc44638f']
$\text{conductor}(deg=3)$
ratio_sqrt 0x9d671cd581c69bc5e697f5e1d12ab7e202a91318c7301d658dbccc77d5ce2ef2
factorization ['0x2', '0x3', '0x7', '0x11', '0xbdd', '0x20885', '0x450d57', '0xc72ba1', '0x1438b013', '0x228d1011', '0xbab873df5893', '0x599ca070b13f0320b']
$\text{conductor}(deg=4)$
ratio_sqrt 0x7d4b584979c431f8a1d6817aa688db0716e5f9d306371e9b876f0401e26d6ec56aa89623e98069ed360657caeb81edf3
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x6
complement_bit_length 0x3
$\text{class_number}()$
upper 0x2
lower 0x0
$\text{small_prime_order}(l=2)$
order 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d905
complement_bit_length 0x7
$\text{small_prime_order}(l=3)$
order 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0x55555555555555555555555555555554e8e4f44ce51835693ff0ca2ef01215c0
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364140
complement_bit_length 0x1
$\text{small_prime_order}(l=11)$
order 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
complement_bit_length 0x2
$\text{small_prime_order}(l=13)$
order 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9050
complement_bit_length 0x3
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x1', '0x4']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x1
depth 0x1
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x1
full 0x1
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=11)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x1
full 0x4
relative 0x4
$\text{isogeny_extension}(l=17)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x6
relative 0x6
$\text{trace_factorization}(deg=1)$
trace 0x14551231950b75fc4402da1722fc9baef
trace_factorization ['0x2a1', '0x7bbf018f252b819f7a2bfbfc44638f']
number_of_factors 0x2
$\text{trace_factorization}(deg=2)$
trace 0x14551231950b75fc4402da1722fc9baef
trace_factorization ['0xb', '0xd', '0x43bd', '0x29b1315e5e7892dadf75c7af437e685a55c7a3ba735d59263e249e9deef']
number_of_factors 0x4
$\text{isogeny_neighbors}(l=2)$
len 0x3
$\text{isogeny_neighbors}(l=3)$
len 0x4
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x82
expected 0x80
ratio 0.98462
$\text{hamming_x}(weight=2)$
x_coord_count 0x3f44
expected 0x3fc0
ratio 1.00766
$\text{hamming_x}(weight=3)$
x_coord_count 0x151720
expected 0x151580
ratio 0.9997
$\text{square_4p1}()$
p 0x3
order 0x3
$\text{pow_distance}()$
distance 0x14551231950b75fc4402da1732fc9bebf
ratio 2.677766655660072e+38
distance 32 0x1
distance 64 0x1
$\text{multiples_x}(k=1)$
Hx 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=2)$
Hx 0x3b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63
bits 0xa6
difference 0x5a
ratio 0.64844
$\text{multiples_x}(k=3)$
Hx 0x4c7ff4f2ba8603998339c8e42675ceac23ef2e9623fdb260b24b1c944a2ea1a9
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=4)$
Hx 0xa6b594b38fb3e77c6edf78161fade2041f4e09fd8497db776e546c41567feb3c
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=5)$
Hx 0xa3c9d9de2ba89d61c63af260be9759d752b8bfef56ee41b2dab2b99871af38a8
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=6)$
Hx 0x9d7b3f1498794e639b6745573b33373f2661e89fd00646045ff0b6d91c8c86ee
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=7)$
Hx 0x611a3775ff4f3e5acf0c371b5abe17d8d57b398710bd8b102597f5732b69d485
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=8)$
Hx 0x16f9a89d6da61f39bdbd7aa1d99d6c4fe7d35c91ae777df739678098dcdf2247
bits 0xfd
difference 0x3
ratio 0.98828
$\text{multiples_x}(k=9)$
Hx 0xc2c5baf2beef370aaceba85af829a907a78ee9fe4b4e348c06ea5504bff5c57b
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=10)$
Hx 0x8c6154856794fcd5ee79ba8c96b7dd980e289a6b93a52d50dbdb9388a4c75604
bits 0x100
difference 0x0
ratio 1.0
$\text{x962_invariant}()$
r 0x0
$\text{brainpool_overlap}()$
o 0x0
$\text{weierstrass}()$
a 0x0
b 0x7