Curve detail

Definition

Name secp224k1
Category secg
Description A Koblitz curve.
Field Prime (0xfffffffffffffffffffffffffffffffffffffffffffffffeffffe56d)
Field bits 224
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x00000000000000000000000000000000000000000000000000000000
Param $b$ 0x00000000000000000000000000000000000000000000000000000005
Generator $x$ 0xa1455b334df099df30fc28a169a467e9e47075a90f7e650eb6b7a45c
Generator $y$ 0x7e089fed7fba344282cafbd6f7e319f7c0b0bd59e2ca4bdb556d61a5

Characteristics

Order 0x10000000000000000000000000001dce8d2ec6184caf0a971769fb1f7
Cofactor 0x1
$j$-invariant 0x0
Trace $t$ -0x1dce8d2ec6184caf0a972769fcc89
Embedding degree $k$ 0x2aaaaaaaaaaaaaaaaaaaaaaaaaaafa26cdd21040cc7d7192e91a9da9
CM discriminant -0x3

Traits

$\text{cofactor}()$
order 0x10000000000000000000000000001dce8d2ec6184caf0a971769fb1f7
cofactor 0x1
$\text{discriminant}()$
cm_disc NO DATA (timed out)
factorization NO DATA (timed out)
max_conductor NO DATA (timed out)
$\text{twist_order}(deg=1)$
twist_cardinality 0xfffffffffffffffffffffffffffe23172d139e7b350f568c896018e5
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfffffffffffffffffffffffffffffffffffffffffffffffdffffcadb7872a41e04df3da09943b0fdc1613c18185dad7d8e36f57a045b06e1
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization ['0x2', '0x3', '0x2aaaaaaaaaaaaaaaaaaaaaaaaaaafa26cdd21040cc7d7192e91a9da9']
(-)largest_factor_bitlen 0xde
$\text{kn_factorization}(k=2)$
(+)factorization ['0x3', '0x3', '0x3', '0x7', '0x7', '0x2b', '0x1db21', '0x13dcc17192a098a9015f7b98a48b594faabd29dca198fa587']
(+)largest_factor_bitlen 0xc1
(-)factorization ['0x13d', '0x2a1', '0x16a375', '0x8c62cd', '0x54c8a2d0d7', '0x96250715bb9fb', '0x413920244914d1c6ea5']
(-)largest_factor_bitlen 0x4b
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x53', '0x1c9', '0x4264aac21693ce5d', '0x132db81df40dd259f', '0x85634b704bfd2024ad4b3']
(+)largest_factor_bitlen 0x54
(-)factorization ['0x2', '0x2', '0xd', '0x17', '0x164da7', '0x35dc4bb', '0x23084a16ac41290e1334d578bc6d10d058e75a1d307']
(-)largest_factor_bitlen 0xaa
$\text{kn_factorization}(k=4)$
(+)factorization ['0x11', '0x3c8128d195', '0xd7ee97da782d060dd', '0x12e27046a13ade2025975ea55a59ed']
(+)largest_factor_bitlen 0x75
(-)factorization ['0x3', '0x5', '0xb', '0x278b2dd3', '0x77940103', '0x93b9fdb900f732b', '0x950e443c16deced9e7e989ea5']
(-)largest_factor_bitlen 0x64
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x2', '0x3', '0x35', '0x23cec545283d', '0xd9f09f36e487', '0x10e6ba3f4e61c88fd65efd76f2f868c1']
(+)largest_factor_bitlen 0x7d
(-)factorization ['0x2', '0x7', '0x71', '0x624f54e42a41935eb77', '0x21b5e89c0216c0bf065e6f898a14f7b8e1b9']
(-)largest_factor_bitlen 0x8e
$\text{kn_factorization}(k=6)$
(+)factorization ['0x5', '0x5', '0x13', '0x87170583d', '0x5389b786b5', '0x220e69e3eccd', '0x8d29165977b409ebc69e92875']
(+)largest_factor_bitlen 0x64
(-)factorization ['0x4cd', '0x1c9852d7145', '0x14a1160e4f7e57', '0x8ad994f23636fec294ef406aede131f']
(-)largest_factor_bitlen 0x7c
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0xb', '0x47', '0x1a5', '0x485dc6d03', '0x104fb7c3232159ad35', '0x26bb54167acebe3ae99c925f8df']
(+)largest_factor_bitlen 0x6a
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen -
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x97', '0xfb', '0x60769', '0xc3caf09ef596d092755ae7f6c086d2ebe8ad6f2322655b47']
(+)largest_factor_bitlen 0xc0
(-)factorization ['0x517', '0xda3', '0x2309', '0xeaebd', '0xe2f69ff', '0x4f7437d459', '0x355d7bdd41317c234e45ab9e3d9']
(-)largest_factor_bitlen 0x6a
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x28
full 0x28
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x4
full 0xc
relative 0x3
$\text{torsion_extension}(l=17)$
least 0x120
full 0x120
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x1dce8d2ec6184caf0a972769fcc89
factorization ['0x13', '0x1d', '0x35', '0x7f', '0x27062fb', '0x37486dea6b5d9de97']
$\text{conductor}(deg=3)$
ratio_sqrt 0x27872a41e04df3da09943b0fdc1613c18185dad7c8e36c0530198bbe4
factorization ['0x2', '0x2', '0x3', '0x7', '0x29', '0x47', '0x105c1d9', '0x11798a8e5d', '0x24e0bfb76bd', '0x41daca4ccf1e36ed35f6fea6a0b']
$\text{conductor}(deg=4)$
ratio_sqrt 0x2bd4b87362ffa224a6e57f57e1e1faafff202e204f1935c8b71f8f07d277cfb6d88f97aad5f00b39a99af
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x6
complement_bit_length 0x3
$\text{class_number}()$
upper 0x2
lower 0x0
$\text{small_prime_order}(l=2)$
order 0x8000000000000000000000000000ee74697630c2657854b8bb4fd8fb
complement_bit_length 0x2
$\text{small_prime_order}(l=3)$
order 0x5555555555555555555555555555f44d9ba4208198fae325d2353b52
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0x8000000000000000000000000000ee74697630c2657854b8bb4fd8fb
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0x8000000000000000000000000000ee74697630c2657854b8bb4fd8fb
complement_bit_length 0x2
$\text{small_prime_order}(l=11)$
order 0x10000000000000000000000000001dce8d2ec6184caf0a971769fb1f6
complement_bit_length 0x1
$\text{small_prime_order}(l=13)$
order 0x8000000000000000000000000000ee74697630c2657854b8bb4fd8fb
complement_bit_length 0x2
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x1', '0x4']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x1
depth 0x4
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x1
full 0x1
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=11)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x1
full 0x6
relative 0x6
$\text{isogeny_extension}(l=17)$
least 0x12
full 0x12
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x2
relative 0x2
$\text{trace_factorization}(deg=1)$
trace -0x1dce8d2ec6184caf0a972769fcc89
trace_factorization ['0x13', '0x1d', '0x35', '0x7f', '0x27062fb', '0x37486dea6b5d9de97']
number_of_factors 0x6
$\text{trace_factorization}(deg=2)$
trace -0x1dce8d2ec6184caf0a972769fcc89
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x3
$\text{isogeny_neighbors}(l=3)$
len 0x4
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x6a
expected 0x70
ratio 1.0566
$\text{hamming_x}(weight=2)$
x_coord_count 0x310f
expected 0x3138
ratio 1.00326
$\text{hamming_x}(weight=3)$
x_coord_count 0xe4623
expected 0xe4a98
ratio 1.00122
$\text{square_4p1}()$
p 0x1
order 0x1
$\text{pow_distance}()$
distance 0x1dce8d2ec6184caf0a971769fb1f7
ratio 2.7871704878214017e+33
distance 32 0x9
distance 64 0x9
$\text{multiples_x}(k=1)$
Hx 0xa1455b334df099df30fc28a169a467e9e47075a90f7e650eb6b7a45c
bits 0xe0
difference 0x1
ratio 0.99556
$\text{multiples_x}(k=2)$
Hx 0x3b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63
bits 0xa6
difference 0x3b
ratio 0.73778
$\text{multiples_x}(k=3)$
Hx 0x1a3f5373f44811c006bff63b25c9a8ccda3841bb26938c1be3facd0d
bits 0xdd
difference 0x4
ratio 0.98222
$\text{multiples_x}(k=4)$
Hx 0xff2e8fd62f296728db63d3af31aa4eabbb6e4dfba136ae9f72f0767
bits 0xdc
difference 0x5
ratio 0.97778
$\text{multiples_x}(k=5)$
Hx 0x99cef4337f5ef29c5b6ca6451c131c8070d25ebaccb5940a1cf3eaa7
bits 0xe0
difference 0x1
ratio 0.99556
$\text{multiples_x}(k=6)$
Hx 0x50fbc2cae0e9f23d8f1858735af665b6dca57fdc8cdec44987290833
bits 0xdf
difference 0x2
ratio 0.99111
$\text{multiples_x}(k=7)$
Hx 0x53ac1a6951387c259ea330b1748cb4ae61c909d8e0d1ff597389591f
bits 0xdf
difference 0x2
ratio 0.99111
$\text{multiples_x}(k=8)$
Hx 0x37f85a0a22420b9678175bbd41f21f96ef1dfe0290bbfe3270c51f6d
bits 0xde
difference 0x3
ratio 0.98667
$\text{multiples_x}(k=9)$
Hx 0x4bf8de3f407c348ba91294119a849954f96b16c412de499446bce8ba
bits 0xdf
difference 0x2
ratio 0.99111
$\text{multiples_x}(k=10)$
Hx 0xee4f47797d70618a36be7fe4ab565699de87c6ce914ff722ad00157
bits 0xdc
difference 0x5
ratio 0.97778
$\text{x962_invariant}()$
r 0x0
$\text{brainpool_overlap}()$
o 0x0
$\text{weierstrass}()$
a 0x0
b 0x5