Curve detail

Definition

Name secp192k1
Category secg
Description A Koblitz curve.
Field Prime (0xfffffffffffffffffffffffffffffffffffffffeffffee37)
Field bits 192
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x000000000000000000000000000000000000000000000000
Param $b$ 0x000000000000000000000000000000000000000000000003
Generator $x$ 0xdb4ff10ec057e9ae26b07d0280b7f4341da5d1b1eae06c7d
Generator $y$ 0x9b2f2f6d9c5628a7844163d015be86344082aa88d95e2f9d

Characteristics

Order 0xfffffffffffffffffffffffe26f2fc170f69466a74defd8d
Cofactor 0x1
$j$-invariant 0x0
Trace $t$ 0x1d90d03e8f096b9948b20f0ab
Embedding degree $k$ 0x7fffffffffffffffffffffff13797e0b87b4a3353a6f7ec6
CM discriminant -0x3

Traits

$\text{cofactor}()$
order 0xfffffffffffffffffffffffe26f2fc170f69466a74defd8d
cofactor 0x1
$\text{discriminant}()$
cm_disc -0x3
factorization ['0x3', '0x1f', '0x1f', '0x1f', '0x1f', '0x1343', '0x1343', '0xd32b', '0xd32b', '0x1e563f01ef28cf1', '0x1e563f01ef28cf1']
max_conductor 0x71169be7330b3038edb025f1
$\text{twist_order}(deg=1)$
twist_cardinality 0x1000000000000000000000001d90d03e8f096b9938b20dee3
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfffffffffffffffffffffffffffffffffffffffdffffdc6f6a21191c2ec4b2ae3edaa7e3ce2f0d126dee58e2c03d859d
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x49', '0xb29', '0x1273a13ceb3', '0x22e08c624dcd7d99a364586e95e9260cad']
(+)largest_factor_bitlen 0x86
(-)factorization ['0x2', '0x2', '0x3', '0xd', '0xd', '0x11', '0x1f', '0x29', '0x62041f6e94d523eef565dfbdbc1c7a4b195f66b2df']
(-)largest_factor_bitlen 0xa7
$\text{kn_factorization}(k=2)$
(+)factorization ['0x3', '0x3', '0x3', '0x5', '0x7', '0x6d', '0x13422815483', '0x10ea3a7835788c83c4ddf06dc365b61c31d']
(+)largest_factor_bitlen 0x89
(-)factorization ['0x3b3', '0x5cf', '0x42d75af', '0x1707af4b4f5', '0x123e0a2d03286d', '0x379c0cc0ae7b93']
(-)largest_factor_bitlen 0x36
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x2', '0x2', '0x5fffffffffffffffffffffff4e9b1e88a5c77a67ebd39f15']
(+)largest_factor_bitlen 0xbf
(-)factorization ['0x2', '0x5', '0x110b', '0x40e77', '0x25ef1f74f4195', '0x77f2ccf1cc43878fc95c97fc2957']
(-)largest_factor_bitlen 0x6f
$\text{kn_factorization}(k=4)$
(+)factorization ['0x4cf', '0x751', '0x9ad', '0xcb3', '0x2905', '0x808f', '0x34b5c3', '0x25e6e9ec284d', '0x6091707d7a6361']
(+)largest_factor_bitlen 0x37
(-)factorization ['0x3', '0x61', '0x68ff', '0x12077b', '0x178fbd369907a8f', '0x52ba73276ce1fc3c6f7fc173']
(-)largest_factor_bitlen 0x5f
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x3', '0xb', '0x4813', '0x28875301', '0x1b31d814ca1f5ace6fd89be550c4797b5b05b']
(+)largest_factor_bitlen 0x91
(-)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x2', '0x7', '0x35', '0x4f', '0x90149', '0x46acedb918ed3', '0x11fd0f477aab1e427aa0c636831']
(-)largest_factor_bitlen 0x69
$\text{kn_factorization}(k=6)$
(+)factorization ['0x49a71', '0x14dacb48a47ec7f0bb7d02916c50797ba8ae4b13ba7bf']
(+)largest_factor_bitlen 0xb1
(-)factorization ['0xb', '0xb03', '0x17bf', '0x1708f', '0xf239e63', '0x645b25bd023b544137376b6c2e57d5f']
(-)largest_factor_bitlen 0x7b
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x2', '0x5', '0x17', '0x1d', '0x2f', '0x246515f5afe91', '0x5258a7450ffebaf3e10b02acff491d8f']
(+)largest_factor_bitlen 0x7f
(-)factorization ['0x2', '0x3', '0x3', '0x29a7', '0xaa26df', '0x39898b69a856ac42eb18095b0f087377edebe2d']
(-)largest_factor_bitlen 0x9a
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x78b', '0x5a80f33a8dad5cc1e94922f3e6b46222eeb098df3d28c9']
(+)largest_factor_bitlen 0xb7
(-)factorization ['0x5', '0x3d25133fcfd872cb9', '0x6b2e7d27375298d83ecfe3b90691b6d3']
(-)largest_factor_bitlen 0x7f
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x2
full 0x3
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x3
full 0xc
relative 0x4
$\text{torsion_extension}(l=17)$
least 0x60
full 0x60
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x1d90d03e8f096b9948b20f0ab
factorization ['0xb', '0x44b183', '0xa043f8140dea19f1cb']
$\text{conductor}(deg=3)$
ratio_sqrt 0x26a21191c2ec4b2ae3edaa7e3ce2f0d116dee354fbf012402
factorization ['0x2', '0x3', '0x3', '0x7', '0x648d', '0x2933c9', '0x117cfaed', '0x15509106a663', '0x354bdb9b30d9a6831125']
$\text{conductor}(deg=4)$
ratio_sqrt 0x29d29909b3e7621aae2c76c058d141a59271da7042a4f1d627c34813f636ba4b8aa9d3e99
factorization ['0xb', '0xd', '0x44b183', '0xa043f8140dea19f1cb', '0x8b9f50c2db6336ec669', '0x33131c3dc9949d2fb6e77bfe8649f']
$\text{embedding}()$
embedding_degree_complement 0x2
complement_bit_length 0x2
$\text{class_number}()$
upper 0x2
lower 0x0
$\text{small_prime_order}(l=2)$
order 0xfffffffffffffffffffffffe26f2fc170f69466a74defd8c
complement_bit_length 0x1
$\text{small_prime_order}(l=3)$
order 0x3fffffffffffffffffffffff89bcbf05c3da519a9d37bf63
complement_bit_length 0x3
$\text{small_prime_order}(l=5)$
order 0x555555555555555555555554b7a65407afcdc2237c4a5484
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0xfffffffffffffffffffffffe26f2fc170f69466a74defd8c
complement_bit_length 0x1
$\text{small_prime_order}(l=11)$
order 0xfffffffffffffffffffffffe26f2fc170f69466a74defd8c
complement_bit_length 0x1
$\text{small_prime_order}(l=13)$
order 0x7fffffffffffffffffffffff13797e0b87b4a3353a6f7ec6
complement_bit_length 0x2
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x1', '0x1'], ['0x3', '0x1']]
len 0x2
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=11)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x1
full 0x4
relative 0x4
$\text{isogeny_extension}(l=17)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x12
relative 0x12
$\text{trace_factorization}(deg=1)$
trace 0x1d90d03e8f096b9948b20f0ab
trace_factorization ['0xb', '0x44b183', '0xa043f8140dea19f1cb']
number_of_factors 0x3
$\text{trace_factorization}(deg=2)$
trace 0x1d90d03e8f096b9948b20f0ab
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x3
$\text{isogeny_neighbors}(l=3)$
len 0x4
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x67
expected 0x60
ratio 0.93204
$\text{hamming_x}(weight=2)$
x_coord_count 0x2412
expected 0x23d0
ratio 0.99285
$\text{hamming_x}(weight=3)$
x_coord_count 0x8dbd3
expected 0x8dc20
ratio 1.00013
$\text{square_4p1}()$
p 0x3
order 0x1
$\text{pow_distance}()$
distance 0x1d90d03e8f096b9958b210273
ratio 4.287575002426037e+28
distance 32 0xd
distance 64 0xd
$\text{multiples_x}(k=1)$
Hx 0xdb4ff10ec057e9ae26b07d0280b7f4341da5d1b1eae06c7d
bits 0xc0
difference 0x0
ratio 1.0
$\text{multiples_x}(k=2)$
Hx 0x554123b78ce563f89a0ed9414f5aa28ad0d96d6795f9c66
bits 0xbb
difference 0x5
ratio 0.97396
$\text{multiples_x}(k=3)$
Hx 0x60bba5021df10b44d6e31f9b901b83bddbe7ce07ae94681f
bits 0xbf
difference 0x1
ratio 0.99479
$\text{multiples_x}(k=4)$
Hx 0x1be5434c72cf928dc1a105905e8ca6daf4c85cab9145aab6
bits 0xbd
difference 0x3
ratio 0.98438
$\text{multiples_x}(k=5)$
Hx 0x577ab451b17027eea6e643c7714762f48c81530320673802
bits 0xbf
difference 0x1
ratio 0.99479
$\text{multiples_x}(k=6)$
Hx 0xe188a41a9c084bcee05b396c5be3b3209b5106b78b185aef
bits 0xc0
difference 0x0
ratio 1.0
$\text{multiples_x}(k=7)$
Hx 0x4f43d867993d35d35502791626508ecee847f874e18610a4
bits 0xbf
difference 0x1
ratio 0.99479
$\text{multiples_x}(k=8)$
Hx 0xed9521f70f3a50c67fc27f1267aa4b49b6a1e7fd67f2808b
bits 0xc0
difference 0x0
ratio 1.0
$\text{multiples_x}(k=9)$
Hx 0x984f9cb52b96c303cb6b2f1af4ff87fb951fb2a868342bc7
bits 0xc0
difference 0x0
ratio 1.0
$\text{multiples_x}(k=10)$
Hx 0x44c396a97fd06ef50fd85799c71ddc722dfe4fe7974e0c41
bits 0xbf
difference 0x1
ratio 0.99479
$\text{x962_invariant}()$
r 0x0
$\text{brainpool_overlap}()$
o 0x0
$\text{weierstrass}()$
a 0x0
b 0x3