Curve detail

Definition

Name secp160r2
Category secg
Description A randomly generated curve. [SEC2v1](https://www.secg.org/SEC2-Ver-1.0.pdf) states 'E was chosen verifiably at random as specified in ANSI X9.62 [1] from the seed'.
Field Prime (0xfffffffffffffffffffffffffffffffeffffac73)
Field bits 160
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0xfffffffffffffffffffffffffffffffeffffac70
Param $b$ 0xb4e134d3fb59eb8bab57274904664d5af50388ba
Generator $x$ 0x52dcb034293a117e1f4ff11b30f7199d3144ce6d
Generator $y$ 0xfeaffef2e331f296e071fa0df9982cfea7d43f2e
Simulation seed 0xb99b99b099b323e02709a4d696e6768756151751

Characteristics

Order 0x100000000000000000000351ee786a818f3a1a16b
Cofactor 0x1
$j$-invariant 0xb3e6e6ec627556928cb0ebd0f934efaddc70f163
Trace $t$ -0x351ee786a819f3a1f4f7
Embedding degree $k$ 0x800000000000000000001a8f73c3540c79d0d0b5
CM discriminant -0x3f4fa3067297190d69760e813bc691a3b0ce8eb7b

Traits

$\text{cofactor}()$
order 0x100000000000000000000351ee786a818f3a1a16b
cofactor 0x1
$\text{discriminant}()$
cm_disc -0x3f4fa3067297190d69760e813bc691a3b0ce8eb7b
factorization ['0x6d3', '0x24a09d', '0x40d7b7898bc458ceae06869cd1862facd']
max_conductor 0x1
$\text{twist_order}(deg=1)$
twist_cardinality 0xffffffffffffffffffffcae1187957e50c5db77d
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfffffffffffffffffffffffffffffffdffff58e40b05cf98d68e6f29689f17ed43978cdd0e5b2915
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x2', '0x3', '0x13', '0x35', '0x56c61f5a96543b516f6efec512bc83e382cc7']
(+)largest_factor_bitlen 0x93
(-)factorization ['0x2', '0x4d5', '0x511', '0x7b2b66d09aaae93f3', '0xaddff89dc11b9145ab']
(-)largest_factor_bitlen 0x48
$\text{kn_factorization}(k=2)$
(+)factorization ['0xcbb', '0x10dc5', '0x453b7f834733', '0x8d1fee403af6534900272b']
(+)largest_factor_bitlen 0x58
(-)factorization ['0x3', '0x3', '0x5', '0x2b', '0x9c2689', '0x6f0d40782fcb5ba03b947a09023f8bc3']
(-)largest_factor_bitlen 0x7f
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x5', '0x7', '0x1d', '0x1910b', '0x46e75cd', '0x1ba2e357', '0xa3244639', '0xcac97dcc43f7']
(+)largest_factor_bitlen 0x30
(-)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x2', '0xb', '0x15d7', '0x2eb2c77a100c5026d', '0x461992bfe3a92a48259']
(-)largest_factor_bitlen 0x4b
$\text{kn_factorization}(k=4)$
(+)factorization ['0x3', '0x11', '0x551', '0x1085', '0x1611d', '0x12f815476e33d', '0x23ca11c89f6fe208eb']
(+)largest_factor_bitlen 0x46
(-)factorization ['0x7', '0x264523', '0x4dc0159a7', '0x166d5234a9', '0x8faa086faa32a2421']
(-)largest_factor_bitlen 0x44
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x2', '0x2', '0xd', '0x49', '0x65', '0x7d05487', '0x189d87bb', '0x13ea0a0d2b', '0x74fced025d475']
(+)largest_factor_bitlen 0x33
(-)factorization ['0x2', '0x3', '0x29', '0x29', '0x13bdf', '0x65a8f', '0x424e46973ac62fe0f8cf26dc1ddb9']
(-)largest_factor_bitlen 0x73
$\text{kn_factorization}(k=6)$
(+)factorization ['0x1f', '0x17b', '0x1382e0b8f', '0x1b71f44d55e2e9b59b0509525b6dc9']
(+)largest_factor_bitlen 0x75
(-)factorization ['0x6000000000000000000013eb96d27f095b5c9c881']
(-)largest_factor_bitlen 0xa3
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x3', '0x3', '0x3', '0xd4ccdd9d', '0x27ec06d387165d6808e7df6e6a30a019']
(+)largest_factor_bitlen 0x7e
(-)factorization ['0x2', '0x2', '0x5', '0x5', '0x74420332661', '0x2775b9fcf567b2d9461ac3d682893']
(-)largest_factor_bitlen 0x72
$\text{kn_factorization}(k=8)$
(+)factorization ['0x5', '0xb', '0x17f', '0x853', '0x3ce35', '0xc9234531582871db8fae0416f8d83f']
(+)largest_factor_bitlen 0x78
(-)factorization ['0x3', '0xd', '0x348348348348348348348e2db956b2e44c3b6951']
(-)largest_factor_bitlen 0x9e
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x14
full 0x14
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x15
full 0x15
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x120
full 0x120
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x351ee786a819f3a1f4f7
factorization ['0x3', '0x7', '0xb', '0x1382d19', '0x3046ae6a8219']
$\text{conductor}(deg=3)$
ratio_sqrt 0xf4fa3067297190d69760e813bc691a3e0ce9e622
factorization ['0x2', '0x5', '0xb5', '0x19b5', '0xb8c1', '0x798bb', '0x19932512001d', '0x275fc22aa0abf0b']
$\text{conductor}(deg=4)$
ratio_sqrt 0x67f4466c4d44c3a96b920435d2b2842041a82cc3290d22106ecbb3c771c3
factorization ['0x3', '0x7', '0xb', '0x239', '0x50b', '0xb47', '0x1382d19', '0x97781d11', '0x3046ae6a8219', '0x6b2c789e2c923c0c03239ade1']
$\text{embedding}()$
embedding_degree_complement 0x2
complement_bit_length 0x2
$\text{class_number}()$
upper 0x4717e1e65bd3bdf7318d7b
lower 0xda
$\text{small_prime_order}(l=2)$
order 0x100000000000000000000351ee786a818f3a1a16a
complement_bit_length 0x1
$\text{small_prime_order}(l=3)$
order 0x800000000000000000001a8f73c3540c79d0d0b5
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0x100000000000000000000351ee786a818f3a1a16a
complement_bit_length 0x1
$\text{small_prime_order}(l=7)$
order 0x100000000000000000000351ee786a818f3a1a16a
complement_bit_length 0x1
$\text{small_prime_order}(l=11)$
order 0x100000000000000000000351ee786a818f3a1a16a
complement_bit_length 0x1
$\text{small_prime_order}(l=13)$
order 0x100000000000000000000351ee786a818f3a1a16a
complement_bit_length 0x1
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x3', '0x4']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x7
full 0x7
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x12
full 0x12
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x9
relative 0x9
$\text{trace_factorization}(deg=1)$
trace -0x351ee786a819f3a1f4f7
trace_factorization ['0x3', '0x7', '0xb', '0x1382d19', '0x3046ae6a8219']
number_of_factors 0x5
$\text{trace_factorization}(deg=2)$
trace -0x351ee786a819f3a1f4f7
trace_factorization ['0x239', '0x50b', '0xb47', '0x97781d11', '0x6b2c789e2c923c0c03239ade1']
number_of_factors 0x5
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x58
expected 0x50
ratio 0.90909
$\text{hamming_x}(weight=2)$
x_coord_count 0x1956
expected 0x1928
ratio 0.99291
$\text{hamming_x}(weight=3)$
x_coord_count 0x5329c
expected 0x53548
ratio 1.00201
$\text{square_4p1}()$
p 0x3
order 0x1
$\text{pow_distance}()$
distance 0x351ee786a818f3a1a16b
ratio 5.826069526844493e+24
distance 32 0xb
distance 64 0x15
$\text{multiples_x}(k=1)$
Hx 0x52dcb034293a117e1f4ff11b30f7199d3144ce6d
bits 0x9f
difference 0x2
ratio 0.98758
$\text{multiples_x}(k=2)$
Hx 0x4a96b5688ef573284664698e81e1510fae4e8422
bits 0x9f
difference 0x2
ratio 0.98758
$\text{multiples_x}(k=3)$
Hx 0x1421c8c619daec4731e83038bbed610761c0d911
bits 0x9d
difference 0x4
ratio 0.97516
$\text{multiples_x}(k=4)$
Hx 0xff7d1cec7bee4058971a9823505705b146764206
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=5)$
Hx 0xf6e377f2a6d723d301261d5c05d0d2c731a25a1d
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=6)$
Hx 0xf4dfb91e3ae6d32bbeb4efe9e50e05bc6021ca2a
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=7)$
Hx 0xb5ac65e674bf133a87d43b49ff5cf8095aad7ee2
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=8)$
Hx 0x95c8e3e6d91806a62575820c2896779a27432bd4
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=9)$
Hx 0xaa25e2b10286f97d27a8ae11229d6aaa5eba1153
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=10)$
Hx 0xb31ff6619745e512942048b1fbd1d89f5b21046b
bits 0xa0
difference 0x1
ratio 0.99379
$\text{x962_invariant}()$
r 0x5f1a5a70d2a4b9f1f0c9293f148d4b79b99060d2
$\text{brainpool_overlap}()$
o None
$\text{weierstrass}()$
a 0xfffffffffffffffffffffffffffffffeffffac70
b 0xb4e134d3fb59eb8bab57274904664d5af50388ba