Curve detail

Definition

Name secp160r1 (secg/secp160r1, wtls/wap-wsg-idm-ecid-wtls7)
Category secg
Description A randomly generated curve. [SEC2v1](https://www.secg.org/SEC2-Ver-1.0.pdf) states 'E was chosen verifiably at random as specified in ANSI X9.62 [1] from the seed'.
Field Prime (0xffffffffffffffffffffffffffffffff7fffffff)
Field bits 160
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0xffffffffffffffffffffffffffffffff7ffffffc
Param $b$ 0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45
Generator $x$ 0x4a96b5688ef573284664698968c38bb913cbfc82
Generator $y$ 0x23a628553168947d59dcc912042351377ac5fb32
Simulation seed 0x1053cde42c14d696e67687561517533bf3f83345

Characteristics

Order 0x100000000000000000001f4c8f927aed3ca752257
Cofactor 0x1
$j$-invariant 0xfce63f3745bfae104ff7852383d66f97ba3dec5e
Trace $t$ -0x1f4c8f927aed44a752257
Embedding degree $k$ 0x100000000000000000001f4c8f927aed3ca752256
CM discriminant -0x2c5e54f6bc93593265eaae4fa926ee734bdec66b

Traits

$\text{cofactor}()$
order 0x100000000000000000001f4c8f927aed3ca752257
cofactor 0x1
$\text{discriminant}()$
cm_disc -0x2c5e54f6bc93593265eaae4fa926ee734bdec66b
factorization ['0xb', '0xfcd733', '0x519f3f29', '0xccf0b969003c2a91ebb27b7e3']
max_conductor 0x1
$\text{twist_order}(deg=1)$
twist_cardinality 0xfffffffffffffffffffe0b3706d8512b358adda9
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfffffffffffffffffffffffffffffffeffffffffd3a1ab09436ca6cd9a1551b096d9118cb4213995
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x2', '0x2', '0x3', '0x5', '0x6b', '0x1d86f3', '0xdbef42fec1f', '0x338233eb37d22af29ee2b']
(+)largest_factor_bitlen 0x52
(-)factorization ['0x2', '0x7', '0xf96b5', '0xb8c20731', '0x1a014fcc9fa89c571b030093939']
(-)largest_factor_bitlen 0x69
$\text{kn_factorization}(k=2)$
(+)factorization ['0xb', '0xd21', '0x2b57d', '0x3a5914b6af', '0x5bdf43618ffd3891563f2bf']
(+)largest_factor_bitlen 0x5b
(-)factorization ['0x3', '0x8f9', '0x23c5', '0x882152f1753c9b9457393bf0f980ea671b']
(-)largest_factor_bitlen 0x88
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x21f5', '0x114443b', '0x4c0fe422cb', '0x12883305b21', '0x1e731aff3d7f']
(+)largest_factor_bitlen 0x2d
(-)factorization ['0x2', '0x2', '0x426ab2f3', '0x2e40dc5c232799fd6a5048c7f0c9e657b']
(-)largest_factor_bitlen 0x82
$\text{kn_factorization}(k=4)$
(+)factorization ['0x3', '0x3', '0xd', '0x2a5', '0x34f3ce4ae26954568004f4897b5c3ab8a31d5']
(+)largest_factor_bitlen 0x92
(-)factorization ['0x5', '0xd94fb', '0xf142e4079a2ba58f93158d2986cb9ebc96d']
(-)largest_factor_bitlen 0x8c
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x2', '0x149d5', '0x1b18d', '0x8df875', '0x1087276de6fb0ed152382b3c3c9']
(+)largest_factor_bitlen 0x69
(-)factorization ['0x2', '0x3', '0x3', '0x17', '0x29cec0dd911393', '0x12ee9089e2946bf3aefa42782d']
(-)largest_factor_bitlen 0x65
$\text{kn_factorization}(k=6)$
(+)factorization ['0x5', '0x7', '0x43', '0x310def', '0x130c040b2eb9', '0x2df18f3a0d9a1684b35e85']
(+)largest_factor_bitlen 0x56
(-)factorization ['0x6049ee18f', '0xe1a8d0233e54df1', '0x1218c866b353a5be57']
(-)largest_factor_bitlen 0x45
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x3', '0x11', '0x2c5', '0xb2c3', '0xc1575917', '0xc237c3df', '0xfdada8362df01755d']
(+)largest_factor_bitlen 0x44
(-)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x13', '0x1cfe19bb413', '0x2db7f98ffad', '0x91b999dc361ecbc197']
(-)largest_factor_bitlen 0x48
$\text{kn_factorization}(k=8)$
(+)factorization ['0x80000000000000000000fa647c93d769e53a912b9']
(+)largest_factor_bitlen 0xa4
(-)factorization ['0x3', '0x7', '0x7', '0x1f', '0x151', '0x593', '0x9740344f', '0x1a899682d94af6c677db4a34ff']
(-)largest_factor_bitlen 0x65
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x10
full 0x10
relative 0x1
$\text{torsion_extension}(l=11)$
least 0xa
full 0xb
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x4
full 0xc
relative 0x3
$\text{torsion_extension}(l=17)$
least 0x90
full 0x90
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x1f4c8f927aed44a752257
factorization ['0x3', '0x2b', '0x1241', '0x3671873d326d5317']
$\text{conductor}(deg=3)$
ratio_sqrt 0x2d3a1ab09436ca6cd9a1551b056d9118b34213992
factorization ['0x2', '0xd', '0x1a2d', '0x110329bec8cfe95b0469b8060ccaa4b740481']
$\text{conductor}(deg=4)$
ratio_sqrt 0x392c6df7c73459fce77eb5520e60fdff402d9235ef3c5400f09f66f1f16f5
factorization ['0x3', '0x2b', '0x1241', '0x147bcf57', '0x192ad001629bbf07', '0x3671873d326d5317', '0xe8388a721413f4d273']
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper 0xe76d690a92da070c76fc1
lower 0x2e27
$\text{small_prime_order}(l=2)$
order 0x80000000000000000000fa647c93d769e53a912b
complement_bit_length 0x2
$\text{small_prime_order}(l=3)$
order 0x80000000000000000000fa647c93d769e53a912b
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0x80000000000000000000fa647c93d769e53a912b
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0x100000000000000000001f4c8f927aed3ca752256
complement_bit_length 0x1
$\text{small_prime_order}(l=11)$
order 0x100000000000000000001f4c8f927aed3ca752256
complement_bit_length 0x1
$\text{small_prime_order}(l=13)$
order 0x124924924924924924926ce9c8a767ea8e7614bd
complement_bit_length 0x4
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x8
full 0x8
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x1
full 0xb
relative 0xb
$\text{isogeny_extension}(l=13)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=17)$
least 0x9
full 0x9
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x9
relative 0x9
$\text{trace_factorization}(deg=1)$
trace -0x1f4c8f927aed44a752257
trace_factorization ['0x3', '0x2b', '0x1241', '0x3671873d326d5317']
number_of_factors 0x4
$\text{trace_factorization}(deg=2)$
trace -0x1f4c8f927aed44a752257
trace_factorization ['0x147bcf57', '0x192ad001629bbf07', '0xe8388a721413f4d273']
number_of_factors 0x3
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x51
expected 0x50
ratio 0.98765
$\text{hamming_x}(weight=2)$
x_coord_count 0x1911
expected 0x1928
ratio 1.00358
$\text{hamming_x}(weight=3)$
x_coord_count 0x535ac
expected 0x53548
ratio 0.99971
$\text{square_4p1}()$
p 0x1
order 0x1
$\text{pow_distance}()$
distance 0x1f4c8f927aed3ca752257
ratio 6.179996960904088e+23
distance 32 0x9
distance 64 0x17
$\text{multiples_x}(k=1)$
Hx 0x4a96b5688ef573284664698968c38bb913cbfc82
bits 0x9f
difference 0x2
ratio 0.98758
$\text{multiples_x}(k=2)$
Hx 0x10095f05b8f95920fd785d5c6003ee2a7f0ca3d1
bits 0x9d
difference 0x4
ratio 0.97516
$\text{multiples_x}(k=3)$
Hx 0xc3e0df1b31f643cd93955683809d0a38232350b9
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=4)$
Hx 0x24c1fdce9ee9a170eaa9a41aafc1c6c0202e671
bits 0x9a
difference 0x7
ratio 0.95652
$\text{multiples_x}(k=5)$
Hx 0x4526acc477091847abef2ef109f0dfb7495c36d
bits 0x9b
difference 0x6
ratio 0.96273
$\text{multiples_x}(k=6)$
Hx 0xfdb49e82860308a53e48d65f74a33ad9066e2f49
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=7)$
Hx 0x612d5957a0cd0b33636231299b21f198ac18804c
bits 0x9f
difference 0x2
ratio 0.98758
$\text{multiples_x}(k=8)$
Hx 0xf536cce6dc72db398cc9039bfec6d2b6a90f4e74
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=9)$
Hx 0x4d62cc37edc69b13323c0d68df1f420392d6218b
bits 0x9f
difference 0x2
ratio 0.98758
$\text{multiples_x}(k=10)$
Hx 0x6f197c22f2b43618c63b5f08335713d07d0fc89c
bits 0x9f
difference 0x2
ratio 0.98758
$\text{x962_invariant}()$
r 0x2da6c4d70b90ff912e725e25e90af631c18f0d2f
$\text{brainpool_overlap}()$
o None
$\text{weierstrass}()$
a 0xffffffffffffffffffffffffffffffff7ffffffc
b 0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45