Curve detail

Definition

Name secp160k1
Category secg
Description A Koblitz curve.
Field Prime (0xfffffffffffffffffffffffffffffffeffffac73)
Field bits 160
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x0000000000000000000000000000000000000000
Param $b$ 0x0000000000000000000000000000000000000007
Generator $x$ 0x3b4c382ce37aa192a4019e763036f4f5dd4d7ebb
Generator $y$ 0x938cf935318fdced6bc28286531733c3f03c4fee

Characteristics

Order 0x100000000000000000001b8fa16dfab9aca16b6b3
Cofactor 0x1
$j$-invariant 0x0
Trace $t$ -0x1b8fa16dfab9bca170a3f
Embedding degree $k$ 0x80000000000000000000dc7d0b6fd5cd650b5b59
CM discriminant -0x3

Traits

$\text{cofactor}()$
order 0x100000000000000000001b8fa16dfab9aca16b6b3
cofactor 0x1
$\text{discriminant}()$
cm_disc -0x3
factorization ['0x3', '0x7', '0x7', '0x6661', '0x6661', '0x1dc4a03f', '0x1dc4a03f', '0x1cd6cc8cd', '0x1cd6cc8cd']
max_conductor 0x96341f1138933bc2f505
$\text{twist_order}(deg=1)$
twist_cardinality 0xfffffffffffffffffffe4705e920546335e8a235
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfffffffffffffffffffffffffffffffdffff58e6f79ca2f18ccde7e11b681bbccce197a45f005e45
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x2', '0x139', '0x3cb', '0x8adf003', '0x1970bffb53c93339e2b56d277e935']
(+)largest_factor_bitlen 0x71
(-)factorization ['0x2', '0x3', '0x5', '0x2285', '0x2539c66d03622d505', '0x1b333c2460c275ae272f']
(-)largest_factor_bitlen 0x4d
$\text{kn_factorization}(k=2)$
(+)factorization ['0x3', '0x3', '0x1a3', '0x9691f4f', '0x76c5a08dbcd', '0x7f5fb827418fdeec32d7']
(+)largest_factor_bitlen 0x4f
(-)factorization ['0x7', '0x47', '0x97', '0x4fff', '0x2e1461', '0x15c91501', '0x1018e46d30b', '0x16aad6e70c7']
(-)largest_factor_bitlen 0x29
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x13', '0x13', '0x17', '0x194b5a2bb', '0x4d890620f07', '0x18ba24514514f7792df']
(+)largest_factor_bitlen 0x49
(-)factorization ['0x2', '0x2', '0x2', '0x3b', '0x5b2cd', '0xddb45', '0x5467b7a1c9971501f9f0e95d6ba19']
(-)largest_factor_bitlen 0x73
$\text{kn_factorization}(k=4)$
(+)factorization ['0x5', '0xa585ccf', '0x13cbf393a8c6be402ab8efd05a53788f87']
(+)largest_factor_bitlen 0x85
(-)factorization ['0x3', '0x407e6f', '0x54ae0bd036ec1549f6cbbf29a36f3ebb277']
(-)largest_factor_bitlen 0x8b
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x2', '0x2', '0x3', '0x7', '0x7', '0x11', '0xa99', '0x18bef583ca89d60503d4cfa65f761ae1c9']
(+)largest_factor_bitlen 0x85
(-)factorization ['0x2', '0xb', '0xd', '0x2bae771', '0x25020dd98dad', '0xb5705b4303d82cf52a305']
(-)largest_factor_bitlen 0x54
$\text{kn_factorization}(k=6)$
(+)factorization ['0xb', '0x1169', '0x2073d695132d', '0x3f44be8d8c150fa9726a884a75']
(+)largest_factor_bitlen 0x66
(-)factorization ['0x5', '0x5', '0x5bcd9c293', '0x26a4bccf6ec8db', '0x46f00bd2b1bee04619']
(-)largest_factor_bitlen 0x47
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x2f', '0x53', '0xef', '0x6ccb', '0x47091d', '0x11d4d57', '0x8d3310c51', '0x364e0e093549']
(+)largest_factor_bitlen 0x2e
(-)factorization ['0x2', '0x2', '0x3', '0x3', '0x862a2223b', '0x5efb2eefb73a27d9c7a63735c3abe83']
(-)largest_factor_bitlen 0x7b
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0xd', '0x5b56ce7f083', '0x9dd7fce8e3d', '0xeeb474a3091d684139']
(+)largest_factor_bitlen 0x48
(-)factorization ['0xed1', '0x6c07db951f', '0x1478d3cf5b0deea1ad5f6dba30c39']
(-)largest_factor_bitlen 0x71
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x2
full 0x3
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x2
full 0x2
relative 0x1
$\text{torsion_extension}(l=11)$
least 0xf
full 0xf
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x2
full 0x6
relative 0x3
$\text{torsion_extension}(l=17)$
least 0x60
full 0x60
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x1b8fa16dfab9bca170a3f
factorization ['0x1349', '0x16ddbac4ec04232947']
$\text{conductor}(deg=3)$
ratio_sqrt 0x1f79ca2f18ccde7e11b681bbbcce0f08943bb4f0e
factorization NO DATA (timed out)
$\text{conductor}(deg=4)$
ratio_sqrt 0x1aa871d2617546a4895161e0e1a9e466f0c51d91561fa39dcb9aee9741225
factorization ['0x49', '0x12c1', '0x1349', '0x3871', '0x3bf5', '0xbe4bd8ace351', '0x4b647ecc2fe6f6357', '0x16ddbac4ec04232947']
$\text{embedding}()$
embedding_degree_complement 0x2
complement_bit_length 0x2
$\text{class_number}()$
upper 0x2
lower 0x0
$\text{small_prime_order}(l=2)$
order 0x333333333333333333338b6537c655855b9e248a
complement_bit_length 0x3
$\text{small_prime_order}(l=3)$
order 0x100000000000000000001b8fa16dfab9aca16b6b2
complement_bit_length 0x1
$\text{small_prime_order}(l=5)$
order 0x80000000000000000000dc7d0b6fd5cd650b5b59
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0x100000000000000000001b8fa16dfab9aca16b6b2
complement_bit_length 0x1
$\text{small_prime_order}(l=11)$
order 0x111111111111111111112e77129771d71e8a0c2e
complement_bit_length 0x4
$\text{small_prime_order}(l=13)$
order 0x100000000000000000001b8fa16dfab9aca16b6b2
complement_bit_length 0x1
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x1', '0x1'], ['0x3', '0x1']]
len 0x2
$\text{division_polynomials}(l=5)$
factorization [['0x3', '0x4']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x1
depth 0x1
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x1
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=17)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x9
relative 0x9
$\text{trace_factorization}(deg=1)$
trace -0x1b8fa16dfab9bca170a3f
trace_factorization ['0x1349', '0x16ddbac4ec04232947']
number_of_factors 0x2
$\text{trace_factorization}(deg=2)$
trace -0x1b8fa16dfab9bca170a3f
trace_factorization ['0x49', '0x12c1', '0x3871', '0x3bf5', '0xbe4bd8ace351', '0x4b647ecc2fe6f6357']
number_of_factors 0x6
$\text{isogeny_neighbors}(l=2)$
len 0x3
$\text{isogeny_neighbors}(l=3)$
len 0x4
$\text{isogeny_neighbors}(l=5)$
len 0x6
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x56
expected 0x50
ratio 0.93023
$\text{hamming_x}(weight=2)$
x_coord_count 0x18cd
expected 0x1928
ratio 1.01433
$\text{hamming_x}(weight=3)$
x_coord_count 0x5348e
expected 0x53548
ratio 1.00055
$\text{square_4p1}()$
p 0x3
order 0x1
$\text{pow_distance}()$
distance 0x1b8fa16dfab9aca16b6b3
ratio 7.018168111136911e+23
distance 32 0xd
distance 64 0xd
$\text{multiples_x}(k=1)$
Hx 0x3b4c382ce37aa192a4019e763036f4f5dd4d7ebb
bits 0x9e
difference 0x3
ratio 0.98137
$\text{multiples_x}(k=2)$
Hx 0x48ce563f89a0ed9414f5aa28ad0d96d6795f9c62
bits 0x9f
difference 0x2
ratio 0.98758
$\text{multiples_x}(k=3)$
Hx 0x22f058ad4d86af34604e1de3b760d76706b8e67
bits 0x9a
difference 0x7
ratio 0.95652
$\text{multiples_x}(k=4)$
Hx 0x78c0859f91740ae3cb01b5a1770f1432e2afd93d
bits 0x9f
difference 0x2
ratio 0.98758
$\text{multiples_x}(k=5)$
Hx 0x7b9173b2e08e135046078e1ffe624139c83f2e6b
bits 0x9f
difference 0x2
ratio 0.98758
$\text{multiples_x}(k=6)$
Hx 0x9f1bf45413940d5c6c998f23efe68287ff89f949
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=7)$
Hx 0xd29ec7d5e7369a09ef5e5f80d3a2059e81b39dc1
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=8)$
Hx 0xcf0ae83d47d45582b0612d3a8b4a4d2e2d176b60
bits 0xa0
difference 0x1
ratio 0.99379
$\text{multiples_x}(k=9)$
Hx 0xa8a65a2d54a3bddf7121a90c22a8ddb816eaeee
bits 0x9c
difference 0x5
ratio 0.96894
$\text{multiples_x}(k=10)$
Hx 0x6c383e0d76cdceeaa4fe4d7f9cd2989cfb7befc0
bits 0x9f
difference 0x2
ratio 0.98758
$\text{x962_invariant}()$
r 0x0
$\text{brainpool_overlap}()$
o None
$\text{weierstrass}()$
a 0x0
b 0x7