Curve detail
Definition
Name | secp112r2 |
---|---|
Category | secg |
Description | A randomly generated curve. [SEC2v1](https://www.secg.org/SEC2-Ver-1.0.pdf) states 'E was chosen verifiably at random as specified in ANSI X9.62 [1] from the seed'. |
Field | Prime (0xdb7c2abf62e35e668076bead208b) |
Field bits | 112 |
Form | Weierstrass $y^2 = x^3 + ax + b$ |
Param $a$ | 0x6127c24c05f38a0aaaf65c0ef02c |
Param $b$ | 0x51def1815db5ed74fcc34c85d709 |
Generator $x$ | 0x4ba30ab5e892b4e1649dd0928643 |
Generator $y$ | 0xadcd46f5882e3747def36e956e97 |
Simulation seed | 0x2757a1114d696e6768756151755316c05e0bd4 |
Characteristics
Order | 0x36df0aafd8b8d7597ca10520d04b |
Cofactor | 0x4 |
$j$-invariant | 0x597e254b44d77100b6eb01a0fecc |
Trace $t$ | 0x1008df2aa29df60 |
Embedding degree $k$ | 0x124a58e5483d9d1dd435ac60456e |
CM discriminant | -0x9b351dbd00959c5113358ac3078b |
Traits
$\text{cofactor}()$ | |
---|---|
order | 0x36df0aafd8b8d7597ca10520d04b |
cofactor | 0x4 |
$\text{discriminant}()$ | |
cm_disc | -0x9b351dbd00959c5113358ac3078b |
factorization | ['0x2', '0x2', '0x17', '0x6bf86dbb21cc40386668077c8ad'] |
max_conductor | 0x2 |
$\text{twist_order}(deg=1)$ | |
twist_cardinality | 0xdb7c2abf62e35f670e6968d6ffec |
factorization | None |
$\text{twist_order}(deg=2)$ | |
twist_cardinality | 0xbc2dad5ce3bc2b4e238afa969c1823c49104f18fc477259ea64f2e64 |
factorization | None |
$\text{kn_factorization}(k=1)$ | |
(+)factorization | ['0x5', '0xa8353', '0x252a883ac97', '0x1cc2c5666f645'] |
(+)largest_factor_bitlen | 0x31 |
(-)factorization | NO DATA (timed out) |
(-)largest_factor_bitlen | - |
$\text{kn_factorization}(k=2)$ | |
(+)factorization | ['0x3', '0x3', '0x236877f647c3b', '0x160a3819616d7b63'] |
(+)largest_factor_bitlen | 0x3d |
(-)factorization | ['0xd', '0x35', '0xa36a66605', '0xff81acc4e7e3d811b'] |
(-)largest_factor_bitlen | 0x44 |
$\text{kn_factorization}(k=3)$ | |
(+)factorization | ['0x101', '0x314b', '0x844ceaf', '0x19bf3b63a93482d41'] |
(+)largest_factor_bitlen | 0x41 |
(-)factorization | ['0x7', '0x25', '0x47', '0x768420a91', '0x13ccdcc4711ea5807'] |
(-)largest_factor_bitlen | 0x41 |
$\text{kn_factorization}(k=4)$ | |
(+)factorization | ['0x7', '0x269', '0x47a8c5', '0xff14b7', '0xba92f7267dac75'] |
(+)largest_factor_bitlen | 0x38 |
(-)factorization | ['0x3', '0x5', '0xb', '0x67', '0xd3981aa1285645c3e83726045'] |
(-)largest_factor_bitlen | 0x64 |
$\text{kn_factorization}(k=5)$ | |
(+)factorization | ['0x3', '0x1f73f', '0x8ff297', '0x14af0872a85de0a2387'] |
(+)largest_factor_bitlen | 0x49 |
(-)factorization | ['0x295', '0x599', '0x29cbb7', '0xbadd7577', '0x27d20c94b17'] |
(-)largest_factor_bitlen | 0x2a |
$\text{kn_factorization}(k=6)$ | |
(+)factorization | ['0x5', '0x1b12fe8d77a3', '0x9ba687d5e6c7b6047'] |
(+)largest_factor_bitlen | 0x44 |
(-)factorization | ['0x17', '0x17', '0xc5', '0x33c28ed360131bf6866dc2cab'] |
(-)largest_factor_bitlen | 0x62 |
$\text{kn_factorization}(k=7)$ | |
(+)factorization | ['0xb', '0x11', '0x1f', '0x43d930aceba6c68996b41cc651'] |
(+)largest_factor_bitlen | 0x67 |
(-)factorization | ['0x3', '0x3', '0x3', '0x3', '0x4f', '0x5fb', '0x643fd', '0x1a3ed70231a7accc763'] |
(-)largest_factor_bitlen | 0x49 |
$\text{kn_factorization}(k=8)$ | |
(+)factorization | ['0x3', '0xa793', '0x37e244c5dc895669d48a6d3e9'] |
(+)largest_factor_bitlen | 0x62 |
(-)factorization | ['0x136d', '0x5a63a08f0fdc5252a6e5ef047b'] |
(-)largest_factor_bitlen | 0x67 |
$\text{torsion_extension}(l=2)$ | |
least | 0x1 |
full | 0x2 |
relative | 0x2 |
$\text{torsion_extension}(l=3)$ | |
least | 0x8 |
full | 0x8 |
relative | 0x1 |
$\text{torsion_extension}(l=5)$ | |
least | 0x18 |
full | 0x18 |
relative | 0x1 |
$\text{torsion_extension}(l=7)$ | |
least | 0x3 |
full | 0x6 |
relative | 0x2 |
$\text{torsion_extension}(l=11)$ | |
least | 0x5 |
full | 0xa |
relative | 0x2 |
$\text{torsion_extension}(l=13)$ | |
least | 0x3 |
full | 0xc |
relative | 0x4 |
$\text{torsion_extension}(l=17)$ | |
least | 0x120 |
full | 0x120 |
relative | 0x1 |
$\text{conductor}(deg=2)$ | |
ratio_sqrt | 0x1008df2aa29df60 |
factorization | ['0x2', '0x2', '0x2', '0x2', '0x2', '0xb', '0xba95c7c192d1'] |
$\text{conductor}(deg=3)$ | |
ratio_sqrt | 0x25a0094a2653a9ef348e10fb4375 |
factorization | ['0x2dc1f', '0xc0cef09fb', '0x1177def6a4b58d1'] |
$\text{conductor}(deg=4)$ | |
ratio_sqrt | 0xb640f816a3b00b073a02d59f17826031a816cf1240 |
factorization | ['0x2', '0x2', '0x2', '0x2', '0x2', '0x2', '0x3', '0xb', '0xd', '0x3b', '0xba95c7c192d1', '0xa1dd2e942e564b66bb0d2d027'] |
$\text{embedding}()$ | |
embedding_degree_complement | 0x3 |
complement_bit_length | 0x2 |
$\text{class_number}()$ | |
upper | 0x131df8ac6963e39a |
lower | 0x0 |
$\text{small_prime_order}(l=2)$ | |
order | None |
complement_bit_length | None |
$\text{small_prime_order}(l=3)$ | |
order | 0x36df0aafd8b8d7597ca10520d04a |
complement_bit_length | 0x2 |
$\text{small_prime_order}(l=5)$ | |
order | 0x1b6f8557ec5c6bacbe5082906825 |
complement_bit_length | 0x3 |
$\text{small_prime_order}(l=7)$ | |
order | 0x618c84c6d69df09f16739756c7a |
complement_bit_length | 0x5 |
$\text{small_prime_order}(l=11)$ | |
order | 0x36df0aafd8b8d7597ca10520d04a |
complement_bit_length | 0x2 |
$\text{small_prime_order}(l=13)$ | |
order | 0x36df0aafd8b8d7597ca10520d04a |
complement_bit_length | 0x2 |
$\text{division_polynomials}(l=2)$ | |
factorization | [['0x1', '0x1'], ['0x2', '0x1']] |
len | 0x2 |
$\text{division_polynomials}(l=3)$ | |
factorization | [['0x4', '0x1']] |
len | 0x1 |
$\text{division_polynomials}(l=5)$ | |
factorization | [['0xc', '0x1']] |
len | 0x1 |
$\text{volcano}(l=2)$ | |
crater_degree | 0x0 |
depth | 0x1 |
$\text{volcano}(l=3)$ | |
crater_degree | 0x0 |
depth | 0x0 |
$\text{volcano}(l=5)$ | |
crater_degree | 0x0 |
depth | 0x0 |
$\text{volcano}(l=7)$ | |
crater_degree | 0x2 |
depth | 0x0 |
$\text{volcano}(l=11)$ | |
crater_degree | 0x2 |
depth | 0x0 |
$\text{volcano}(l=13)$ | |
crater_degree | 0x2 |
depth | 0x0 |
$\text{volcano}(l=17)$ | |
crater_degree | 0x0 |
depth | 0x0 |
$\text{volcano}(l=19)$ | |
crater_degree | 0x0 |
depth | 0x0 |
$\text{isogeny_extension}(l=2)$ | |
least | 0x1 |
full | 0x2 |
relative | 0x2 |
$\text{isogeny_extension}(l=3)$ | |
least | 0x4 |
full | 0x4 |
relative | 0x1 |
$\text{isogeny_extension}(l=5)$ | |
least | 0x6 |
full | 0x6 |
relative | 0x1 |
$\text{isogeny_extension}(l=7)$ | |
least | 0x1 |
full | 0x6 |
relative | 0x6 |
$\text{isogeny_extension}(l=11)$ | |
least | 0x1 |
full | 0x2 |
relative | 0x2 |
$\text{isogeny_extension}(l=13)$ | |
least | 0x1 |
full | 0x4 |
relative | 0x4 |
$\text{isogeny_extension}(l=17)$ | |
least | 0x12 |
full | 0x12 |
relative | 0x1 |
$\text{isogeny_extension}(l=19)$ | |
least | 0x14 |
full | 0x14 |
relative | 0x1 |
$\text{trace_factorization}(deg=1)$ | |
trace | 0x1008df2aa29df60 |
trace_factorization | ['0x2', '0x2', '0x2', '0x2', '0x2', '0xb', '0xba95c7c192d1'] |
number_of_factors | 0x3 |
$\text{trace_factorization}(deg=2)$ | |
trace | 0x1008df2aa29df60 |
trace_factorization | ['0x2', '0x3', '0xd', '0x3b', '0xa1dd2e942e564b66bb0d2d027'] |
number_of_factors | 0x5 |
$\text{isogeny_neighbors}(l=2)$ | |
len | 0x1 |
$\text{isogeny_neighbors}(l=3)$ | |
len | 0x0 |
$\text{isogeny_neighbors}(l=5)$ | |
len | 0x0 |
$\text{q_torsion}()$ | |
Q_torsion | 0x1 |
$\text{hamming_x}(weight=1)$ | |
x_coord_count | 0x30 |
expected | 0x38 |
ratio | 1.16667 |
$\text{hamming_x}(weight=2)$ | |
x_coord_count | 0xc49 |
expected | 0xc24 |
ratio | 0.98824 |
$\text{hamming_x}(weight=3)$ | |
x_coord_count | 0x1bd45 |
expected | 0x1bd28 |
ratio | 0.99975 |
$\text{square_4p1}()$ | |
p | 0x1 |
order | 0x1 |
$\text{pow_distance}()$ | |
distance | 0x2483d5409d1ca29a0d7beb7cbed4 |
ratio | 6.01082 |
distance 32 | 0xc |
distance 64 | 0x14 |
$\text{multiples_x}(k=1)$ | |
Hx | 0x4ba30ab5e892b4e1649dd0928643 |
bits | 0x6f |
difference | 0x1 |
ratio | 1.00909 |
$\text{multiples_x}(k=2)$ | |
Hx | 0x7beda5a3fa2430485f6af7358119 |
bits | 0x6f |
difference | 0x1 |
ratio | 1.00909 |
$\text{multiples_x}(k=3)$ | |
Hx | 0x8d6d9bdc3be62801b3bd313a4046 |
bits | 0x70 |
difference | 0x0 |
ratio | 1.01818 |
$\text{multiples_x}(k=4)$ | |
Hx | 0x79537101c56a67185de36f3c4ec |
bits | 0x6b |
difference | 0x5 |
ratio | 0.97273 |
$\text{multiples_x}(k=5)$ | |
Hx | 0x10d27920175e2c62072f56125270 |
bits | 0x6d |
difference | 0x3 |
ratio | 0.99091 |
$\text{multiples_x}(k=6)$ | |
Hx | 0x712478aabc6dd5beaddcaa2459b6 |
bits | 0x6f |
difference | 0x1 |
ratio | 1.00909 |
$\text{multiples_x}(k=7)$ | |
Hx | 0xbb30048f4364f01b3425a7386cce |
bits | 0x70 |
difference | 0x0 |
ratio | 1.01818 |
$\text{multiples_x}(k=8)$ | |
Hx | 0x2c8527a41a50bbad4cfe60502659 |
bits | 0x6e |
difference | 0x2 |
ratio | 1.0 |
$\text{multiples_x}(k=9)$ | |
Hx | 0x26c6dc30b0fd449eca64dc61cb9c |
bits | 0x6e |
difference | 0x2 |
ratio | 1.0 |
$\text{multiples_x}(k=10)$ | |
Hx | 0x63bb286f484112be379ef42bc85d |
bits | 0x6f |
difference | 0x1 |
ratio | 1.00909 |
$\text{x962_invariant}()$ | |
r | 0x560bc550e87218cb56e9f893eeca |
$\text{brainpool_overlap}()$ | |
o | None |
$\text{weierstrass}()$ | |
a | 0x6127c24c05f38a0aaaf65c0ef02c |
b | 0x51def1815db5ed74fcc34c85d709 |