Curve detail
Definition
Name | secp112r1 (secg/secp112r1, wtls/wap-wsg-idm-ecid-wtls6) |
---|---|
Category | secg |
Description | A randomly generated curve. [SEC2v1](https://www.secg.org/SEC2-Ver-1.0.pdf) states 'E was chosen verifiably at random as specified in ANSI X9.62 [1] from the seed'. |
Field | Prime (0xdb7c2abf62e35e668076bead208b) |
Field bits | 112 |
Form | Weierstrass $y^2 = x^3 + ax + b$ |
Param $a$ | 0xdb7c2abf62e35e668076bead2088 |
Param $b$ | 0x659ef8ba043916eede8911702b22 |
Generator $x$ | 0x09487239995a5ee76b55f9c2f098 |
Generator $y$ | 0xa89ce5af8724c0a23e0e0ff77500 |
Simulation seed | 0xf50b028e4d696e676875615175290472783fb1 |
Characteristics
Order | 0xdb7c2abf62e35e7628dfac6561c5 |
Cofactor | 0x1 |
$j$-invariant | 0xadad8cacc8dd210422960337beca |
Trace $t$ | -0xfa868edb84139 |
Embedding degree $k$ | 0xdb7c2abf62e35e7628dfac6561c4 |
CM discriminant | -0x36cfb7fe7ccf1fcdd86299e26837b |
Traits
$\text{discriminant}()$ | |
---|---|
cm_disc | -0x36cfb7fe7ccf1fcdd86299e26837b |
factorization | ['0x35', '0x108bfd95477d520dd70f469b4aef'] |
max_conductor | 0x1 |
$\text{twist_order}(deg=1)$ | |
twist_cardinality | 0xdb7c2abf62e35e56d80dd0f4df53 |
factorization | None |
$\text{twist_order}(deg=2)$ | |
twist_cardinality | 0xbc2dad5ce3bc2b4e238afa969c17239d881126f438ddec4b3334c915 |
factorization | None |
$\text{kn_factorization}(k=1)$ | |
(+)factorization | ['0x2', '0x3', '0x3', '0xc319098dad3be23024550b04c8b'] |
(+)largest_factor_bitlen | 0x6c |
(-)factorization | ['0x2', '0x2', '0x29', '0x35b', '0x661aedbb7d5022c18e27c86b'] |
(-)largest_factor_bitlen | 0x5f |
$\text{kn_factorization}(k=2)$ | |
(+)factorization | ['0x1b6f8557ec5c6bcec51bf58cac38b'] |
(+)largest_factor_bitlen | 0x71 |
(-)factorization | ['0x3', '0x5', '0xe1ac9e43', '0x21327c01eb7594f0408d'] |
(-)largest_factor_bitlen | 0x4e |
$\text{kn_factorization}(k=3)$ | |
(+)factorization | ['0x2', '0x2', '0x2', '0x2', '0x5', '0x5', '0x7', '0xb', '0x23d5', '0x329c383bd', '0xc5c80d71f0951'] |
(+)largest_factor_bitlen | 0x34 |
(-)factorization | ['0x2', '0x3d', '0x65', '0xdae1209d9de8d986bec337737'] |
(-)largest_factor_bitlen | 0x64 |
$\text{kn_factorization}(k=4)$ | |
(+)factorization | ['0x3', '0x10f', '0x7b5', '0x15ef9', '0x1a29d35dc42e3165066d'] |
(+)largest_factor_bitlen | 0x4d |
(-)factorization | ['0x7', '0xbf', '0x3d7', '0x2bc7454b5e27ebe791b8054d'] |
(-)largest_factor_bitlen | 0x5e |
$\text{kn_factorization}(k=5)$ | |
(+)factorization | ['0x2', '0x3b03', '0xbacb', '0xcbe50f12060ba33525a8d'] |
(+)largest_factor_bitlen | 0x54 |
(-)factorization | ['0x2', '0x2', '0x2', '0x3', '0xd', '0x1a99d0c6672e7b', '0x21d9b95ed452b7'] |
(-)largest_factor_bitlen | 0x36 |
$\text{kn_factorization}(k=6)$ | |
(+)factorization | ['0x5c9', '0x11fb3', '0xca8e0140ba7107bbc9debd'] |
(+)largest_factor_bitlen | 0x58 |
(-)factorization | ['0x4f', '0xa7', '0xfa97b', '0x1a1ae40a21a23ce2031cf'] |
(-)largest_factor_bitlen | 0x51 |
$\text{kn_factorization}(k=7)$ | |
(+)factorization | ['0x2', '0x2', '0x3', '0x1d', '0x49d', '0x2c9f6ff', '0x7ffa9c5', '0xafb80554121'] |
(+)largest_factor_bitlen | 0x2c |
(-)factorization | ['0x2', '0x5', '0x11', '0x8b', '0x17b', '0xb3e316477c4288dbafb7985'] |
(-)largest_factor_bitlen | 0x5c |
$\text{kn_factorization}(k=8)$ | |
(+)factorization | ['0x5', '0xd', '0x3b3', '0x611', '0x13429a2fd89d2f80a383dc3'] |
(+)largest_factor_bitlen | 0x59 |
(-)factorization | ['0x3', '0x3', '0xb', '0x4a881', '0x3ceb84848401affbc764ded'] |
(-)largest_factor_bitlen | 0x5a |
$\text{torsion_extension}(l=2)$ | |
least | 0x3 |
full | 0x3 |
relative | 0x1 |
$\text{torsion_extension}(l=3)$ | |
least | 0x8 |
full | 0x8 |
relative | 0x1 |
$\text{torsion_extension}(l=5)$ | |
least | 0x8 |
full | 0x8 |
relative | 0x1 |
$\text{torsion_extension}(l=7)$ | |
least | 0x3 |
full | 0x6 |
relative | 0x2 |
$\text{torsion_extension}(l=11)$ | |
least | 0x78 |
full | 0x78 |
relative | 0x1 |
$\text{torsion_extension}(l=13)$ | |
least | 0x18 |
full | 0x18 |
relative | 0x1 |
$\text{torsion_extension}(l=17)$ | |
least | 0x8 |
full | 0x10 |
relative | 0x2 |
$\text{conductor}(deg=2)$ | |
ratio_sqrt | 0xfa868edb84139 |
factorization | ['0x5', '0xd', '0x16f', '0x28d', '0x10dd2c33'] |
$\text{conductor}(deg=3)$ | |
ratio_sqrt | 0xda86ffa9a447e1aa04c5621f21da |
factorization | ['0x2', '0x1d', '0x1d', '0x71cb', '0x4ad317ad0aa745ac7240ef'] |
$\text{conductor}(deg=4)$ | |
ratio_sqrt | 0x1aca551801c30a182dfa456d09258edc0663ee6d7d |
factorization | ['0x3', '0x5', '0xd', '0x3d', '0x16f', '0x1e7', '0x28d', '0x111f2cf', '0x10dd2c33', '0xe1843d15', '0x155adf0e73f'] |
$\text{embedding}()$ | |
embedding_degree_complement | 0x1 |
complement_bit_length | 0x1 |
$\text{class_number}()$ | |
upper | 0x2e766b29b64c3406 |
lower | 0x1 |
$\text{small_prime_order}(l=2)$ | |
order | 0xdb7c2abf62e35e7628dfac6561c4 |
complement_bit_length | 0x1 |
$\text{small_prime_order}(l=3)$ | |
order | 0xdb7c2abf62e35e7628dfac6561c4 |
complement_bit_length | 0x1 |
$\text{small_prime_order}(l=5)$ | |
order | 0xdb7c2abf62e35e7628dfac6561c4 |
complement_bit_length | 0x1 |
$\text{small_prime_order}(l=7)$ | |
order | 0x6dbe155fb171af3b146fd632b0e2 |
complement_bit_length | 0x2 |
$\text{small_prime_order}(l=11)$ | |
order | 0xdb7c2abf62e35e7628dfac6561c4 |
complement_bit_length | 0x1 |
$\text{small_prime_order}(l=13)$ | |
order | 0xdb7c2abf62e35e7628dfac6561c4 |
complement_bit_length | 0x1 |
$\text{division_polynomials}(l=2)$ | |
factorization | [['0x3', '0x1']] |
len | 0x1 |
$\text{division_polynomials}(l=3)$ | |
factorization | [['0x4', '0x1']] |
len | 0x1 |
$\text{division_polynomials}(l=5)$ | |
factorization | [['0x4', '0x3']] |
len | 0x1 |
$\text{volcano}(l=2)$ | |
crater_degree | 0x0 |
depth | 0x0 |
$\text{volcano}(l=3)$ | |
crater_degree | 0x0 |
depth | 0x0 |
$\text{volcano}(l=5)$ | |
crater_degree | 0x0 |
depth | 0x0 |
$\text{volcano}(l=7)$ | |
crater_degree | 0x2 |
depth | 0x0 |
$\text{volcano}(l=11)$ | |
crater_degree | 0x0 |
depth | 0x0 |
$\text{volcano}(l=13)$ | |
crater_degree | 0x0 |
depth | 0x0 |
$\text{volcano}(l=17)$ | |
crater_degree | 0x2 |
depth | 0x0 |
$\text{volcano}(l=19)$ | |
crater_degree | 0x0 |
depth | 0x0 |
$\text{isogeny_extension}(l=2)$ | |
least | 0x3 |
full | 0x3 |
relative | 0x1 |
$\text{isogeny_extension}(l=3)$ | |
least | 0x4 |
full | 0x4 |
relative | 0x1 |
$\text{isogeny_extension}(l=5)$ | |
least | 0x2 |
full | 0x2 |
relative | 0x1 |
$\text{isogeny_extension}(l=7)$ | |
least | 0x1 |
full | 0x6 |
relative | 0x6 |
$\text{isogeny_extension}(l=11)$ | |
least | 0xc |
full | 0xc |
relative | 0x1 |
$\text{isogeny_extension}(l=13)$ | |
least | 0x2 |
full | 0x2 |
relative | 0x1 |
$\text{isogeny_extension}(l=17)$ | |
least | 0x1 |
full | 0x10 |
relative | 0x10 |
$\text{isogeny_extension}(l=19)$ | |
least | 0x14 |
full | 0x14 |
relative | 0x1 |
$\text{trace_factorization}(deg=1)$ | |
trace | -0xfa868edb84139 |
trace_factorization | ['0x5', '0xd', '0x16f', '0x28d', '0x10dd2c33'] |
number_of_factors | 0x5 |
$\text{trace_factorization}(deg=2)$ | |
trace | -0xfa868edb84139 |
trace_factorization | ['0x3', '0x3d', '0x1e7', '0x111f2cf', '0xe1843d15', '0x155adf0e73f'] |
number_of_factors | 0x6 |
$\text{isogeny_neighbors}(l=2)$ | |
len | 0x0 |
$\text{isogeny_neighbors}(l=3)$ | |
len | 0x0 |
$\text{isogeny_neighbors}(l=5)$ | |
len | 0x0 |
$\text{q_torsion}()$ | |
Q_torsion | 0x1 |
$\text{hamming_x}(weight=1)$ | |
x_coord_count | 0x3a |
expected | 0x38 |
ratio | 0.96552 |
$\text{hamming_x}(weight=2)$ | |
x_coord_count | 0xc26 |
expected | 0xc24 |
ratio | 0.99936 |
$\text{hamming_x}(weight=3)$ | |
x_coord_count | 0x1be4c |
expected | 0x1bd28 |
ratio | 0.99744 |
$\text{square_4p1}()$ | |
p | 0x1 |
order | 0x1 |
$\text{pow_distance}()$ | |
distance | 0x2483d5409d1ca189d720539a9e3b |
ratio | 6.01082 |
distance 32 | 0x5 |
distance 64 | 0x5 |
$\text{multiples_x}(k=1)$ | |
Hx | 0x9487239995a5ee76b55f9c2f098 |
bits | 0x6c |
difference | 0x4 |
ratio | 0.96429 |
$\text{multiples_x}(k=2)$ | |
Hx | 0xaa8728a0279bd6d44e8c99c573e7 |
bits | 0x70 |
difference | 0x0 |
ratio | 1.0 |
$\text{multiples_x}(k=3)$ | |
Hx | 0x71b29d6bd4cc566539bf5644a154 |
bits | 0x6f |
difference | 0x1 |
ratio | 0.99107 |
$\text{multiples_x}(k=4)$ | |
Hx | 0xd41907b39931dffa6103ffbc8c2c |
bits | 0x70 |
difference | 0x0 |
ratio | 1.0 |
$\text{multiples_x}(k=5)$ | |
Hx | 0xa29c1051c271f7338c08444f4783 |
bits | 0x70 |
difference | 0x0 |
ratio | 1.0 |
$\text{multiples_x}(k=6)$ | |
Hx | 0xa0f134694e5c834e7c00b9674359 |
bits | 0x70 |
difference | 0x0 |
ratio | 1.0 |
$\text{multiples_x}(k=7)$ | |
Hx | 0x1c715b2f7acf3dd1e2dbc2d296fc |
bits | 0x6d |
difference | 0x3 |
ratio | 0.97321 |
$\text{multiples_x}(k=8)$ | |
Hx | 0x8ebafec5962bc4aa17f901910ce |
bits | 0x6c |
difference | 0x4 |
ratio | 0.96429 |
$\text{multiples_x}(k=9)$ | |
Hx | 0x268f1146825d33758a143e8c663b |
bits | 0x6e |
difference | 0x2 |
ratio | 0.98214 |
$\text{multiples_x}(k=10)$ | |
Hx | 0xd4153672fa25b82d85c3fb51962e |
bits | 0x70 |
difference | 0x0 |
ratio | 1.0 |
$\text{x962_invariant}()$ | |
r | 0x29e49e36f941c1b2dc1fb82b5bce |
$\text{weierstrass}()$ | |
a | 0xdb7c2abf62e35e668076bead2088 |
b | 0x659ef8ba043916eede8911702b22 |