Curve detail

Definition

Name id-tc26-gost-3410-2012-256-paramSetA
Category gost
Description RFC5832
Field Prime (0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd97)
Field bits 256
Form Twisted Edwards $ax^2 + y^2 = 1 + dx^2y^2$
Param $a$ 0x01
Param $d$ 0x605f6b7c183fa81578bc39cfad518132b9df62897009af7e522c32d6dc7bffb
Generator $x$ 0x0d
Generator $y$ 0x60ca1e32aa475b348488c38fab07649ce7ef8dbe87f22e81f92b2592dba300e7

Characteristics

Order 0x400000000000000000000000000000000fd8cddfc87b6635c115af556c360c67
Cofactor 0x4
$j$-invariant 0xd0d6242c5d7ec20b1345a8030dfd932fa2f3f36116504ba88f6f28d37bb278fb
Trace $t$ -0x3f63377f21ed98d70456bd55b0d83404
Embedding degree $k$ 0x400000000000000000000000000000000fd8cddfc87b6635c115af556c360c66
CM discriminant -0xfc13810edd3c3c52cbe9b32681b1ecc05f4bb8c41c22aaa5b1b163ceabab9593

Traits

$\text{cofactor}()$
order 0x400000000000000000000000000000000fd8cddfc87b6635c115af556c360c67
cofactor 0x4
$\text{discriminant}()$
cm_disc -0xfc13810edd3c3c52cbe9b32681b1ecc05f4bb8c41c22aaa5b1b163ceabab9593
factorization ['0x2', '0x2', '0xd', '0x1cf', '0x373', '0x83425', '0x88afbf', '0x12e3527', '0x592fc9307', '0x1b9b8233121a6acf88713706af8a145d01']
max_conductor 0x2
$\text{twist_order}(deg=1)$
twist_cardinality 0xffffffffffffffffffffffffffffffffc09cc880de126728fba942aa4f27c994
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb2c0fb1fbc48b0f0eb4d0593365f9384cfe82d11cef8f755569393a70c5515773f4
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x3', '0xd', '0x2cff', '0x14befc65', '0x1ccd5b7202698155b911cb3d59b60ed97fb9a0c2111fd581fd601']
(+)largest_factor_bitlen 0xd1
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=2)$
(+)factorization ['0x7', '0x6b', '0xaefef98189bdb16375eacf1fc9505207b0494a81f86e76d549b75cda889bfd']
(+)largest_factor_bitlen 0xf8
(-)factorization ['0x3', '0x5', '0x1549', '0xbe113d', '0x228ef6e6cc9317f6bf2d3af7994d1859867d469111f5a4156abdde5']
(-)largest_factor_bitlen 0xda
$\text{kn_factorization}(k=3)$
(+)factorization ['0x5', '0x16e1bb', '0x6b6781fd032e62fcb0e379b4058e29d18e88f8c45192bc41618fabc4a23']
(+)largest_factor_bitlen 0xeb
(-)factorization ['0x89', '0x59b184abe9939ed5059b184abe9939ed668f2442f7551d41fdc86f2ed72fb7b']
(-)largest_factor_bitlen 0xfb
$\text{kn_factorization}(k=4)$
(+)factorization ['0x3', '0x3', '0x3', '0x53e09a9ed3b051', '0x73c0b5cffaf1ac3bac2ce3c4f2f830ebc3bc0deb09b4a1c073']
(+)largest_factor_bitlen 0xc7
(-)factorization ['0x29', '0x409', '0x2acc67', '0x3c20a11f', '0x9da0e73756f7ab3509b52a97b35983e32a0b7a12be9c7e17']
(-)largest_factor_bitlen 0xc0
$\text{kn_factorization}(k=5)$
(+)factorization ['0x52f', '0x8cb', '0x1c153f69e1d1f8db39f14952eaf398b6644e70142c52ef741eca7f096529']
(+)largest_factor_bitlen 0xed
(-)factorization ['0x3', '0x3', '0x7', '0x7', '0x3b9', '0xc799598a8b57c6a3bfd95dde51a2545c7ed3e9afac4131011fa7d443307b']
(-)largest_factor_bitlen 0xf0
$\text{kn_factorization}(k=6)$
(+)factorization ['0x1f', '0x67', '0x1677221', '0x2b7b273', '0x277a0a73', '0x47f32565', '0x13d6eff25bcb56f3', '0x2588edd95703cc7b3377']
(+)largest_factor_bitlen 0x4e
(-)factorization ['0xe9', '0x2ccc81f', '0x54e898f4c77b9eb5f', '0x7194222561654b7de5eeaa81f14ec87fb722ac8f']
(-)largest_factor_bitlen 0x9f
$\text{kn_factorization}(k=7)$
(+)factorization ['0x3', '0x11e3173d22299', '0xc124b21b41964104949ebf4895', '0x2c433edaeb4978b9f4dedd6abb3']
(+)largest_factor_bitlen 0x6a
(-)factorization ['0x5', '0x11', '0x62275', '0x12e941', '0x6bc6ad', '0xa6bb5a9d0e3', '0xa9aa6b08f513993b9dee7edbf76e486922e8d']
(-)largest_factor_bitlen 0x94
$\text{kn_factorization}(k=8)$
(+)factorization ['0x5', '0x193b35d665d61', '0x24819f55b5b489', '0xcf7834ac421adb', '0x8c77d6f68245b85e6a7af587f']
(+)largest_factor_bitlen 0x64
(-)factorization ['0x3', '0x1d', '0x54279fb', '0x323c72364125ff47', '0x1a274556e32ad598ef', '0xdf3f7c94f6a50576b7c88a03']
(-)largest_factor_bitlen 0x60
$\text{torsion_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x78
full 0x78
relative 0x1
$\text{torsion_extension}(l=13)$
least 0xc
full 0xd
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x18
full 0x18
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x3f63377f21ed98d70456bd55b0d83404
factorization ['0x2', '0x2', '0xfd8cddfc87b6635c115af556c360d01']
$\text{conductor}(deg=3)$
ratio_sqrt 0xf04e043b74f0f14b2fa6cc9a06c7b3017d2ee310708aaa96c6c58f3aaeae5d87
factorization ['0x5', '0x7', '0x11', '0x2cad', '0x25073b61fda987a43ce41581a1de805df07fdeec95b6165ce19b1ddca11']
$\text{conductor}(deg=4)$
ratio_sqrt 0x7ae38ccd8029134259bce442edfc67bf2ebc14395ddff37aff4bd9b48bb3dc69e951f7dbdac773883b06d11da68b8478
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper 0x380b1583486b76955febff864c6dd030ab
lower 0x269bee464783
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order 0x400000000000000000000000000000000fd8cddfc87b6635c115af556c360c66
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0x400000000000000000000000000000000fd8cddfc87b6635c115af556c360c66
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0x400000000000000000000000000000000fd8cddfc87b6635c115af556c360c66
complement_bit_length 0x2
$\text{small_prime_order}(l=11)$
order 0x400000000000000000000000000000000fd8cddfc87b6635c115af556c360c66
complement_bit_length 0x2
$\text{small_prime_order}(l=13)$
order 0x2000000000000000000000000000000007ec66efe43db31ae08ad7aab61b0633
complement_bit_length 0x3
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x1'], ['0x2', '0x1']]
len 0x2
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x6', '0x2']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x1
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=11)$
least 0xc
full 0xc
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x1
full 0xd
relative 0xd
$\text{isogeny_extension}(l=17)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0xa
full 0xa
relative 0x1
$\text{trace_factorization}(deg=1)$
trace -0x3f63377f21ed98d70456bd55b0d83404
trace_factorization ['0x2', '0x2', '0xfd8cddfc87b6635c115af556c360d01']
number_of_factors 0x2
$\text{trace_factorization}(deg=2)$
trace -0x3f63377f21ed98d70456bd55b0d83404
trace_factorization ['0x2', '0x3', '0x29', '0x65', '0x7f', '0x1b1', '0x61e4cab', '0x93d721e3', '0x16501314ebc1aa3', '0x13c9eba8337ac49f610afed686c7d']
number_of_factors 0xa
$\text{isogeny_neighbors}(l=2)$
len 0x1
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x85
expected 0x80
ratio 0.96241
$\text{hamming_x}(weight=2)$
x_coord_count 0x4057
expected 0x4040
ratio 0.9986
$\text{hamming_x}(weight=3)$
x_coord_count 0x15590f
expected 0x155540
ratio 0.9993
$\text{square_4p1}()$
p 0x5
order NO DATA (timed out)
$\text{pow_distance}()$
distance 0x3f63377f21ed98d70456bd55b0d8319c
ratio 1.3742803523162354e+39
distance 32 0x4
distance 64 0x1c
$\text{multiples_x}(k=1)$
Hx 0x91e38443a5e82c0d880923425712b2bb658b9196932e02c78b2582fe742daa28
bits 0x100
difference 0x1
ratio 1.00392
$\text{multiples_x}(k=2)$
Hx 0xeb8b85ae2b303ba4a990f78e81838dc91f0c17ddcafaf662de507dda8e51e3d0
bits 0x100
difference 0x1
ratio 1.00392
$\text{multiples_x}(k=3)$
Hx 0x97689df8e46e80c91eee963fc354c842454198eca2c620ce170a757d061110c7
bits 0x100
difference 0x1
ratio 1.00392
$\text{multiples_x}(k=4)$
Hx 0x34085b25e2d182d7ce02fb8434f85cbe6aeaf2c96537505edfcbbe5bb5467458
bits 0xfe
difference 0x3
ratio 0.99608
$\text{multiples_x}(k=5)$
Hx 0x77cdedd31926a5c268950f8e3874de0dbac5ca3285b753a8e83bb19f8ec5cdda
bits 0xff
difference 0x2
ratio 1.0
$\text{multiples_x}(k=6)$
Hx 0xb70281437808c4f0e4809813cd83e69bd2048aaf43e274f77252a017c5525a42
bits 0x100
difference 0x1
ratio 1.00392
$\text{multiples_x}(k=7)$
Hx 0x2a425cd365954aea8f1fcae3b4d991feab35f2a893c938068190420bb445c816
bits 0xfe
difference 0x3
ratio 0.99608
$\text{multiples_x}(k=8)$
Hx 0x4a4d920ebca4147740599112bd00062e333521294646ed545cc77fd2f3869fbd
bits 0xff
difference 0x2
ratio 1.0
$\text{multiples_x}(k=9)$
Hx 0x6eae70c0825fe4898afc7b907e41aaaaafa14081de013a26afcbbe3d11782978
bits 0xff
difference 0x2
ratio 1.0
$\text{multiples_x}(k=10)$
Hx 0x7968db09b1cbb32de98252c39cc06421f3115fb88d566efe00ed75cf96c0c2ff
bits 0xff
difference 0x2
ratio 1.0
$\text{x962_invariant}()$
r 0x69310e5651ded2c76e08ac623def3a36004218a1729c2c80ba9eb60b4ad0db6f
$\text{brainpool_overlap}()$
o 0x16360e853e0377d25b5d8b72
$\text{weierstrass}()$
a 0xc2173f1513981673af4892c23035a27ce25e2013bf95aa33b22c656f277e7335
b 0x295f9bae7428ed9ccc20e7c359a9d41a22fccd9108e17bf7ba9337a6f8ae9513