Curve detail

Definition

Name id-GostR3410-2001-CryptoPro-B-ParamSet
Category gost
Description RFC4357
Field Prime (0x8000000000000000000000000000000000000000000000000000000000000c99)
Field bits 256
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x8000000000000000000000000000000000000000000000000000000000000c96
Param $b$ 0x3e1af419a269a5f866a7d3c25c3df80ae979259373ff2b182f49d4ce7e1bbc8b
Generator $x$ 0x01
Generator $y$ 0x3fa8124359f96680b83d1c3eb2c070e5c545c9858d03ecfb744bf8d717717efc

Characteristics

Order 0x800000000000000000000000000000015f700cfff1a624e5e497161bcc8a198f
Cofactor 0x1
$j$-invariant 0xeb55211d5ce06b7a7f1cc637dd93b32cf6ae9e3f7de2a17453a9c240919033b
Trace $t$ -0x15f700cfff1a624e5e497161bcc8a0cf5
Embedding degree $k$ 0x40000000000000000000000000000000afb8067ff8d31272f24b8b0de6450cc7
CM discriminant -0x26b

Traits

$\text{cofactor}()$
order 0x800000000000000000000000000000015f700cfff1a624e5e497161bcc8a198f
cofactor 0x1
$\text{discriminant}()$
cm_disc -0x26b
factorization ['0x67', '0x67', '0x26b', '0x1849', '0x1849', '0x106f645', '0x106f645', '0xedcd144d', '0xedcd144d', '0x5ffb8817411f', '0x5ffb8817411f']
max_conductor 0x37edd5497379ce4edff2a11e9b89c41
$\text{twist_order}(deg=1)$
twist_cardinality 0x7ffffffffffffffffffffffffffffffea08ff3000e59db1a1b68e9e43375ffa5
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x4000000000000000000000000000000000000000000000000000000000000c99e27474b139420919928b9f8bda20912fdc68cf537566126e33cb26c6716a7cb9
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x2', '0x2', '0x2', '0x3', '0x1f', '0xc5', '0xc0a03a415d', '0x1ca34c7494c4adf06ff2e07', '0x153f9378dd215a0bd84b16f871bb']
(+)largest_factor_bitlen 0x6d
(-)factorization ['0x2', '0x290ed7fe8767c7eb5', '0x18f0ba055a2b64e61c5c38527b065ce594317c9f25e30f0b']
(-)largest_factor_bitlen 0xbd
$\text{kn_factorization}(k=2)$
(+)factorization ['0x313', '0xe35', '0x365f4d', '0x40edd9', '0x6ccf1db4858dbda85678e8d3882c8ab779ee95c311b8a81d']
(+)largest_factor_bitlen 0xbf
(-)factorization ['0x3', '0x5', '0x25', '0x977', '0x35c3', '0x2850bf', '0x127e224b1', '0x146623f17a41c0753e8d779578847df9ccfeae67285']
(-)largest_factor_bitlen 0xa9
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x5', '0xb', '0x5815', '0x169d86df47', '0x72d96657350d59459aed6c861bc826762807d7f706178eecfb']
(+)largest_factor_bitlen 0xc7
(-)factorization ['0x2', '0x2', '0x7', '0xe5', '0x67f', '0x1a9ceeb', '0x16b3ceae9a7e2adb98d5f92ab4b4d84990a30d34c0679bf288dd5']
(-)largest_factor_bitlen 0xd1
$\text{kn_factorization}(k=4)$
(+)factorization ['0x3', '0x3', '0x7', '0x557', '0x1859e9ff41c18be5ce47eb0ca46e23ad7e3f6a1674b9a5650e3f2ef14acb5']
(+)largest_factor_bitlen 0xf1
(-)factorization ['0x3e0910d651', '0x25e0b7d549fcd943e521c7e1', '0x37c7e86f3085a0aa538347d357e5e22b']
(-)largest_factor_bitlen 0x7e
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x2', '0x3', '0x3', '0x3', '0xd', '0x3b', '0x2fa5', '0x1a7c031', '0xc0f9969eb12b4c5b3', '0x1108ccdce9b3231f87d8bdf237c7dd008cf']
(-)largest_factor_bitlen 0x89
$\text{kn_factorization}(k=6)$
(+)factorization ['0x32e4b1a29d7', '0x4cd86d8ae7f5d', '0x26a2d0d2f27c5c05cf', '0x14d18b570d0a61cfd46de496f']
(+)largest_factor_bitlen 0x61
(-)factorization ['0x11', '0x13', '0x22c15', '0x2c5ff', '0x6509ab99bd0388a9da69a5a2e55fcb4d9e482b811dc1de9a7b49d9']
(-)largest_factor_bitlen 0xd7
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x3', '0x253c0b13fdb3283', '0x402b782b8480d65fe9ae86a10f21555d42a35e5ea351b00b8d']
(+)largest_factor_bitlen 0xc7
(-)factorization ['0x2', '0x2', '0x2', '0x5', '0x125', '0x2a1', '0x771d5aed037f279b2bbeb4dca48c5151e52fee78f0d8993ee6c3e77f6a5']
(-)largest_factor_bitlen 0xeb
$\text{kn_factorization}(k=8)$
(+)factorization ['0x5', '0x5', '0x5', '0xd', '0x59', '0x6d', '0x2a5', '0x3e2f', '0xa47bdfed82889', '0x5501df06acaa577', '0x1f0fce1fc63bee7bdafaa73aa9']
(+)largest_factor_bitlen 0x65
(-)factorization ['0x3', '0xb', '0x1f07c1f07c1f07c1f07c1f07c1f07c1f5cf4603e0c093f3f7d3be654509d9997']
(-)largest_factor_bitlen 0xfd
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x2
full 0x4
relative 0x2
$\text{torsion_extension}(l=7)$
least 0x3
full 0x6
relative 0x2
$\text{torsion_extension}(l=11)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x2a
full 0x2a
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x18
full 0x18
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x15f700cfff1a624e5e497161bcc8a0cf5
factorization ['0x3e0f', '0x3379a9', '0x237b4965', '0xcb3359788e99c407']
$\text{conductor}(deg=3)$
ratio_sqrt 0x1627474b139420919928b9f8bda20912fdc68cf537566126e33cb26c670cbd5e0
factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x11', '0xfb', '0x1c1', '0x83f', '0x9311', '0xf2d1da4f87311289', '0x1596521c929069ed5aee7278583975e0856b']
$\text{conductor}(deg=4)$
ratio_sqrt 0x136e0ca71e845bc976aeec853d17acef4f32ee794cb0f9d451b11b2b9c8d5388976933f3e5521d0e77dc3efef94bcf4f3
factorization ['0x3', '0x5', '0x269', '0x3e0f', '0x650b', '0x3379a9', '0x3f81a7', '0x3a9cb35', '0x237b4965', '0x24e0170f', '0xcb3359788e99c407', '0x43dd4bfa4963187eb4b', '0x1c95600fec2ce70883bd']
$\text{embedding}()$
embedding_degree_complement 0x2
complement_bit_length 0x2
$\text{class_number}()$
upper 0x33
lower 0x0
$\text{small_prime_order}(l=2)$
order 0x40000000000000000000000000000000afb8067ff8d31272f24b8b0de6450cc7
complement_bit_length 0x2
$\text{small_prime_order}(l=3)$
order 0x40000000000000000000000000000000afb8067ff8d31272f24b8b0de6450cc7
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0x800000000000000000000000000000015f700cfff1a624e5e497161bcc8a198e
complement_bit_length 0x1
$\text{small_prime_order}(l=7)$
order 0x40000000000000000000000000000000afb8067ff8d31272f24b8b0de6450cc7
complement_bit_length 0x2
$\text{small_prime_order}(l=11)$
order 0x40000000000000000000000000000000afb8067ff8d31272f24b8b0de6450cc7
complement_bit_length 0x2
$\text{small_prime_order}(l=13)$
order 0x800000000000000000000000000000015f700cfff1a624e5e497161bcc8a198e
complement_bit_length 0x1
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x1', '0x2'], ['0x2', '0x1'], ['0x4', '0x2']]
len 0x3
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x1
full 0x4
relative 0x4
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x6
relative 0x6
$\text{isogeny_extension}(l=11)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x7
full 0x7
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x14
full 0x14
relative 0x1
$\text{trace_factorization}(deg=1)$
trace -0x15f700cfff1a624e5e497161bcc8a0cf5
trace_factorization ['0x3e0f', '0x3379a9', '0x237b4965', '0xcb3359788e99c407']
number_of_factors 0x4
$\text{trace_factorization}(deg=2)$
trace -0x15f700cfff1a624e5e497161bcc8a0cf5
trace_factorization ['0x3', '0x5', '0x269', '0x650b', '0x3f81a7', '0x3a9cb35', '0x24e0170f', '0x43dd4bfa4963187eb4b', '0x1c95600fec2ce70883bd']
number_of_factors 0x9
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x2
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x7f
expected 0x80
ratio 1.00787
$\text{hamming_x}(weight=2)$
x_coord_count 0x3f61
expected 0x3fc0
ratio 1.00586
$\text{hamming_x}(weight=3)$
x_coord_count 0x151363
expected 0x151580
ratio 1.00039
$\text{square_4p1}()$
p 0x1
order 0x1
$\text{pow_distance}()$
distance 0x15f700cfff1a624e5e497161bcc8a198f
ratio 1.2393702545009617e+38
distance 32 0xf
distance 64 0xf
$\text{multiples_x}(k=1)$
Hx 0x1
bits 0x1
difference 0xff
ratio 0.00391
$\text{multiples_x}(k=2)$
Hx 0x623a1dbebbd0496d05e6702dd0f381ada3183b305dd5b1403e9014bd08622b03
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=3)$
Hx 0xd7dbd1df0fa255075f641220ad54b084cdb213cdbc02fa16c4360c09f5009b2
bits 0xfc
difference 0x4
ratio 0.98438
$\text{multiples_x}(k=4)$
Hx 0x33e6f7d9b9893a117bfd65d8fae7c0e826422954dbf5a3f63040af9c481ca24f
bits 0xfe
difference 0x2
ratio 0.99219
$\text{multiples_x}(k=5)$
Hx 0x45f578a8582812acdd6526a44ae3cbb43008d949309f00604ad0f4b83e2c5106
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=6)$
Hx 0x334d6d60ba419517dfb14582f98da3fd85057257902aa4ac5447c65883cf8efb
bits 0xfe
difference 0x2
ratio 0.99219
$\text{multiples_x}(k=7)$
Hx 0x6164f72b4c451fb9bbbc496768bb03da404c155b48d0d476d7ba6759403252e7
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=8)$
Hx 0x7ae58dcdc464bc8d6e87960189d77397e277de2719b95fc8033fb539ea914b19
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=9)$
Hx 0x1cf5a8d087f362656c752b1df559a37ff5f7eefdb15a925ff6a448a220af3f3c
bits 0xfd
difference 0x3
ratio 0.98828
$\text{multiples_x}(k=10)$
Hx 0x2340170e096261620d94468913d4b828abd65cdef63895ff6e9827ab0f7ec3dc
bits 0xfe
difference 0x2
ratio 0.99219
$\text{x962_invariant}()$
r 0x15d29bff7b119c4987be7021c2ce9511594bec70fd08577bdcc17a42e59d762f
$\text{brainpool_overlap}()$
o -0x3e1af419a269a5f866a7c72c
$\text{weierstrass}()$
a 0x8000000000000000000000000000000000000000000000000000000000000c96
b 0x3e1af419a269a5f866a7d3c25c3df80ae979259373ff2b182f49d4ce7e1bbc8b