Curve detail

Definition

Name id-GostR3410-2001-CryptoPro-A-ParamSet
Category gost
Description RFC4357
Field Prime (0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd97)
Field bits 256
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd94
Param $b$ 0xa6
Generator $x$ 0x01
Generator $y$ 0x8d91e471e0989cda27df505a453f2b7635294f2ddf23e3b122acc99c9e9f1e14

Characteristics

Order 0xffffffffffffffffffffffffffffffff6c611070995ad10045841b09b761b893
Cofactor 0x1
$j$-invariant 0x5f71484039164cb5f71484039164cb5f71484039164cb5f71484039164cb5e8b
Trace $t$ 0x939eef8f66a52effba7be4f6489e4505
Embedding degree $k$ 0x7fffffffffffffffffffffffffffffffb63088384cad688022c20d84dbb0dc49
CM discriminant -0x3aae01634baee862408b77a2f75c8edff71d8e9fbcc7b515ed97b09b7eb384443

Traits

$\text{cofactor}()$
order 0xffffffffffffffffffffffffffffffff6c611070995ad10045841b09b761b893
cofactor 0x1
$\text{discriminant}()$
cm_disc -0x3aae01634baee862408b77a2f75c8edff71d8e9fbcc7b515ed97b09b7eb384443
factorization ['0x17', '0x71', '0x1e8bd', '0x521fa5b908b', '0x61156ac8fa59f1af7', '0x18e2c1419fc3a160b517b0a793168bd']
max_conductor 0x1
$\text{twist_order}(deg=1)$
twist_cardinality 0x100000000000000000000000000000000939eef8f66a52effba7be4f6489e429d
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb2c551fe9cb451179dbf74885d08a3712008e2716043384aea12684f64814cd85fd
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x2', '0x11b', '0x39e4dcb8897f8c36468eed00e79372e2049bd4add1447b40499d6c556b81bf']
(+)largest_factor_bitlen 0xf6
(-)factorization ['0x2', '0x3', '0x7', '0x11', '0x25', '0x7f', '0x1da95', '0x14d5ce217', '0x2124870741dadb3093ea3747085493f1e0d4be7ba1b1425']
(-)largest_factor_bitlen 0xba
$\text{kn_factorization}(k=2)$
(+)factorization ['0x3', '0x89', '0x2a011', '0x117e0273b', '0x87e0cc8e9324d', '0x3f6fc5ad63ffe351b', '0x34cd0742691f988d9c031']
(+)largest_factor_bitlen 0x52
(-)factorization ['0x5', '0x1d', '0x2e7', '0x2db5', '0x12907', '0x44b55', '0x15e1c2fbe66c9e2fe1b4748539b0b811225e3277efe445b8d']
(-)largest_factor_bitlen 0xc1
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x5', '0x359', '0x24827', '0x10c09d16cbf45', '0x2a1f7a91283315', '0x3a5b932c201cbdc941466948e24e869f']
(+)largest_factor_bitlen 0x7e
(-)factorization ['0x2', '0x2', '0x2', '0x17', '0x3d', '0x54fad', '0xaa05563ef', '0x4f743afb65131d2082b86372fd971955e494a38793f468a7']
(-)largest_factor_bitlen 0xbf
$\text{kn_factorization}(k=4)$
(+)factorization ['0xb', '0xa7f', '0x2ff9743c7', '0xb79f25aa81e50b605', '0x41fb6714652a9d3a2f85fec8403e685127f3']
(+)largest_factor_bitlen 0x8f
(-)factorization ['0x3', '0x3', '0x132d', '0x153d', '0x7a7d', '0x38afcc79e0905', '0x85abef7cde90ea7ca67', '0x50ccba5b563479b2356054d']
(-)largest_factor_bitlen 0x5b
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x3', '0x3', '0x3', '0x19479c1', '0x415c8399a37', '0xbd07b51d23ae5a9693781d', '0x4f93e64d82cde5a93212914f']
(+)largest_factor_bitlen 0x5f
(-)factorization ['0x2', '0x27ffffffffffffffffffffffffffffffe8ef2a9197f630a80adca43984a744d6f']
(-)largest_factor_bitlen 0x102
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x5d075e608e1a9', '0x1082d22101f9ce469faab68e9dae0c3f24ebee32dd8c33b571089']
(-)largest_factor_bitlen 0xd1
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x13', '0xad', '0x24b', '0x7a3ff3', '0x2d6a21d', '0x3a79023', '0x2c1b1b03', '0x23a8de75f4e46742950391273567ee8361']
(+)largest_factor_bitlen 0x86
(-)factorization ['0x2', '0x2', '0x3', '0x5', '0xb', '0xd', '0xa3', '0x86e9', '0xb76d9', '0x197763ab34f8d', '0x8bb8e9c8983761365bb2084b8e079895bdf24d7']
(-)largest_factor_bitlen 0x9c
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x5', '0x49', '0xf59', '0xb999', '0x1d0b7', '0xeeac2a5', '0x2ff4602cf', '0x87bb5e039461695a22a830ae8f6cbca0debb']
(+)largest_factor_bitlen 0x90
(-)factorization ['0x7', '0x1f', '0xf551', '0x9476dd', '0x10fb84c887adca947356a2309486eacc37311d45d0e5183742a7cb']
(-)largest_factor_bitlen 0xd5
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x6
full 0x6
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x78
full 0x78
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x54
full 0x54
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x10
full 0x10
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x939eef8f66a52effba7be4f6489e4505
factorization ['0x13', '0x50b', '0x53037d', '0x235d4547', '0x4d6aa5c1', '0x71bb209f']
$\text{conductor}(deg=3)$
ratio_sqrt 0xaae01634baee862408b77a2f75c8edff71d8e9fbcc7b515ed97b09b7eb384b7e
factorization ['0x2', '0x5', '0x7', '0x3d', '0x1aad', '0x12695b', '0x556fc63950db984058e3b56be949ff05d5d4763ca6e35a55956a7']
$\text{conductor}(deg=4)$
ratio_sqrt 0xf627b2844ef2b1dc9857d38def3bcd683b800ca88c5e24f5049504b52fc1a394a3f911a2e0ef9b6daaf4b276c6c21669
factorization ['0x3', '0x13', '0x3b', '0x50b', '0x53037d', '0x235d4547', '0x4d6aa5c1', '0x71bb209f', '0x26966d091b05a6e1fde5321889ec8f016568f0fe2c84a38f151b081c32307a5']
$\text{embedding}()$
embedding_degree_complement 0x2
complement_bit_length 0x2
$\text{class_number}()$
upper 0x6cf5d8fca366c982fa4a6af0efe14369e8
lower 0x644016d6
$\text{small_prime_order}(l=2)$
order 0x249249249249249249249249249249247d32701015e8670009ee4d0163571a5e
complement_bit_length 0x3
$\text{small_prime_order}(l=3)$
order 0xc30c30c30c30c30c30c30c30c30c30c29bb7ab0074d77aaadfa19ab211d08ca
complement_bit_length 0x5
$\text{small_prime_order}(l=5)$
order 0xffffffffffffffffffffffffffffffff6c611070995ad10045841b09b761b892
complement_bit_length 0x1
$\text{small_prime_order}(l=7)$
order 0xc30c30c30c30c30c30c30c30c30c30c29bb7ab0074d77aaadfa19ab211d08ca
complement_bit_length 0x5
$\text{small_prime_order}(l=11)$
order 0x618618618618618618618618618618614ddbd5803a6bbd556fd0cd5908e8465
complement_bit_length 0x6
$\text{small_prime_order}(l=13)$
order 0x5555555555555555555555555555555524205ad0331e45aac1d6b3ade7cb3d86
complement_bit_length 0x2
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x6', '0x2']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=11)$
least 0xc
full 0xc
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x7
full 0x7
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x8
relative 0x8
$\text{isogeny_extension}(l=19)$
least 0x2
full 0x2
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x939eef8f66a52effba7be4f6489e4505
trace_factorization ['0x13', '0x50b', '0x53037d', '0x235d4547', '0x4d6aa5c1', '0x71bb209f']
number_of_factors 0x6
$\text{trace_factorization}(deg=2)$
trace 0x939eef8f66a52effba7be4f6489e4505
trace_factorization ['0x3', '0x3b', '0x26966d091b05a6e1fde5321889ec8f016568f0fe2c84a38f151b081c32307a5']
number_of_factors 0x3
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x8a
expected 0x80
ratio 0.92754
$\text{hamming_x}(weight=2)$
x_coord_count 0x402a
expected 0x3fc0
ratio 0.99355
$\text{hamming_x}(weight=3)$
x_coord_count 0x151a65
expected 0x151580
ratio 0.99909
$\text{square_4p1}()$
p 0x5
order 0x3
$\text{pow_distance}()$
distance 0x939eef8f66a52effba7be4f6489e476d
ratio 5.9010830870259516e+38
distance 32 0xd
distance 64 0x13
$\text{multiples_x}(k=1)$
Hx 0x1
bits 0x1
difference 0xff
ratio 0.00391
$\text{multiples_x}(k=2)$
Hx 0x5af72a60c16a413e0d46b8a3aa1f32ed8c3e6b9dfe4648ecc7396b29b743a1b4
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=3)$
Hx 0x4c5bdcd7c71c3de9332fa21da742799f0b13771d8ef4b31165ccd012f3319a75
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=4)$
Hx 0x8ea4cc2b0080a3f2d23e1495882cf9c3834ccd0a0442f76ee8652f58125a8c82
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=5)$
Hx 0x5ff6395fee0840782f8ddc539973d01fe301e89d924fb663d9f710a90f45b62f
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=6)$
Hx 0xd8747558339a831395acee6ab13d38bf3587cb25f3cd320446e35671ff954e8f
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=7)$
Hx 0xf7772fece0d8fc3e8da57a52f5bde640cdcde191181c9259556c591d484c2058
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=8)$
Hx 0x1dc96b8aa13666193e3c4e5b3ba67551638a6b54f41a1841fdbce9e52d593aa3
bits 0xfd
difference 0x3
ratio 0.98828
$\text{multiples_x}(k=9)$
Hx 0x4aec54430d20cec901b953bd9bfb8e3dd7541c0bebe55d7fbbd0108e69154242
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=10)$
Hx 0xd30dedd81aad7dc57c5ac95a8b6064e45ca6ddac00838cad75ccafe9894b8575
bits 0x100
difference 0x0
ratio 1.0
$\text{x962_invariant}()$
r 0x73ba495aeea55d758a0d4db3f81f3708f4aa7e45a39e5779ec9a247de681fbdd
$\text{brainpool_overlap}()$
o 0x7ffffffffffffffffffffd94
$\text{weierstrass}()$
a 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd94
b 0xa6