Curve detail

Definition

Name ed-512-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0xfe14ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 512
Form Twisted Edwards $ax^2 + y^2 = 1 + dx^2y^2$
Param $a$ 0xfe14fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe
Param $d$ 0x12a9c

Characteristics

Order 0x3f853fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffcccfd59cdc33470d103060513f6def4d37d9af21b2b2701fa331487ecb8db605
Cofactor 0x4
$j$-invariant 0xcda9233a5135668daa95aecf615d3de755bef0f5e9be3c3c630af4a986c701d0f7e96570e595d6d5f14f57c807143c6f196221dc3c9b7ebdce5f445445871263
Trace $t$ 0xccc0a98c8f32e3cbbf3e7ebb024842cb2099437935363f81733ade04d1c927ec

Traits

$\text{cofactor}()$
order 0x3f853fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffcccfd59cdc33470d103060513f6def4d37d9af21b2b2701fa331487ecb8db605
cofactor 0x4
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0xfe15000000000000000000000000000000000000000000000000000000000000ccc0a98c8f32e3cbbf3e7ebb024842cb2099437935363f81733ade04d1c927ec
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfc2dadb8fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffcab6f9f36c75ac9a08af085ad39c599b5f232fa7bdee1c82596e59fcf57b03e0af5816923d94bc218107020b75a8068024a83219aad2688cc3a60a09f0ed1c194
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=2)$
(+)factorization ['0x5', '0x35', '0x1eae7d95bc609a90e7d95bc609a90e7d95bc609a90e7d95bc609a90e7d95bc6081d758b03bfdb80e09c06c597a69444058cd9d0b725441c010ffa75d1fa9e21']
(+)largest_factor_bitlen 0x1f9
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=5)$
(+)factorization ['0x683', '0xcebfe11e9d', '0xf192073a78e7cb16bea73a884df8e08aeeba2598539caed042e327ecb017344172753c61df6e0b2bb88502afcf1db0206969fd7a01f1ecfc2fa3']
(+)largest_factor_bitlen 0x1d0
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=6)$
(+)factorization ['0x7', '0xd9c8db6db6db6db6db6db6db6db6db6db6db6db6db6db6db6db6db6db6db6db62bed25878542182cc9ca6ecd6bc20fe42d337d05d263c9910af21d2070c14b7f']
(+)largest_factor_bitlen 0x200
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization ['0x3', '0x5', '0x5', '0x5', '0xd0db4ae9022d', '0x5d03cf613c4ac819f44f76f19da965060596ba8b7b20388329e09ecdaf5f10c4660b48062b84b7ff5abf350e748ac43830f5a8835c963c4a367']
(+)largest_factor_bitlen 0x1cb
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x6
full 0x6
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x5
full 0xa
relative 0x2
$\text{torsion_extension}(l=13)$
least 0x4
full 0xc
relative 0x3
$\text{torsion_extension}(l=17)$
least 0x10
full 0x10
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0xccc0a98c8f32e3cbbf3e7ebb024842cb2099437935363f81733ade04d1c927ec
factorization ['0x2', '0x2', '0x3', '0xb', '0x126a7', '0x159014d509844af1bde66e11381bebca7a143d1dbddd73d43bb703ba2ed']
$\text{conductor}(deg=3)$
ratio_sqrt 0x5a5160c938a5365f750f7a52c63a664a0dcd0584211e37da691a6030a84fc1f50a7e96dc26b43de7ef8fdf48a57f97fdb57cde6552d97733c59f5f60f12e3e6f
factorization NO DATA (timed out)
$\text{conductor}(deg=4)$
ratio_sqrt 0x11374c6019e958e311459dd7ed700c023e790b8328d53b196ea35b03920935995e1e4b50afb121f6d3df75fea0ebeec6535c9e705caaeadcab009b4b62a0e4497e6d9472c1075c9d563ad9a4073f6bd15f68fd61aac008e72ec402e1b34824f68
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x4
complement_bit_length 0x3
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x1'], ['0x2', '0x1']]
len 0x2
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x6', '0x2']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x1
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=11)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=13)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x4
relative 0x4
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x6
relative 0x6
$\text{trace_factorization}(deg=1)$
trace 0xccc0a98c8f32e3cbbf3e7ebb024842cb2099437935363f81733ade04d1c927ec
trace_factorization ['0x2', '0x2', '0x3', '0xb', '0x126a7', '0x159014d509844af1bde66e11381bebca7a143d1dbddd73d43bb703ba2ed']
number_of_factors 0x5
$\text{trace_factorization}(deg=2)$
trace 0xccc0a98c8f32e3cbbf3e7ebb024842cb2099437935363f81733ade04d1c927ec
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x1
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x115
expected 0x100
ratio 0.92419
$\text{hamming_x}(weight=2)$
x_coord_count 0x1009a
expected 0xff80
ratio 0.99571
$\text{hamming_x}(weight=3)$
x_coord_count 0xa9b5d8
expected 0xa9ab00
ratio 0.99975
$\text{square_4p1}()$
p NO DATA (timed out)
order NO DATA (timed out)
$\text{pow_distance}()$
distance 0x1eb000000000000000000000000000000000000000000000000000000000000ccc0a98c8f32e3cbbf3e7ebb024842cb2099437935363f81733ade04d1c927ec
ratio 132.47454
distance 32 0xc
distance 64 0x14
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0xdae4a1b74d6d4a0d2a1eced9efd278598ea89efec8ec27a4a282badcaad87cd86bd2a8e80e1fe97acc34c8de463d17be35c60dbbbe2aa2255f94763d74eee28e
$\text{brainpool_overlap}()$
o -0x10c5f9556cfa235d979056eec06293a5f484c46db6d3a0d4566aab69d87bd1c20609044e8b38d8befa9c3408
$\text{weierstrass}()$
a 0x633346b019e85111b1fcea3b7f96b114e027b70e8ebcd0e7bfd5937be4724240191c0292730a9e7858d4fafb45522d522c497949f919898ad1234a49e0a925c1
b 0x1f82ca3d2ccfb6d97c02992ed97e9638678f62e60fa89bcf9bbcd8bc04c54b0bff228dd95c5c2308db4559c98540873e39890c872985408148643f9348129a22