Curve detail

Definition

Name ed-511-mers
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1f)
Field bits 511
Form Twisted Edwards $ax^2 + y^2 = 1 + dx^2y^2$
Param $a$ 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1e
Param $d$ 0x10bf7d

Characteristics

Order 0x1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffea7c34182e41e2e9baa930e478c489b72542706bec5f32194f7c2e8f8d142f11
Cofactor 0x4
$j$-invariant 0x6b981e37d43b3b5947e5fc7ebb6f6777a4cdb7c4fdd5ed19ac8f788ce94c57cdd5643c34cd35172acffa8dfbddf1881922a63699700fc6554b1fe7dce73c0d75
Trace $t$ 0x560f2f9f46f87459155b3c6e1cedd9236af63e504e83379ac20f45c1cbaf41dc

Traits

$\text{cofactor}()$
order 0x1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffea7c34182e41e2e9baa930e478c489b72542706bec5f32194f7c2e8f8d142f11
cofactor 0x4
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0x8000000000000000000000000000000000000000000000000000000000000000560f2f9f46f87459155b3c6e1cedd9236af63e504e83379ac20f45c1cbaf3ffc
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1e1cee34e5a1351e71f3cfda8d7104d1565a58bcc85d7e9fb2ee556c2141b2338b88981b1abc7a4ab05cdc5b406018d0610e295450ccbd4d8c6199502603bd0094
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=2)$
(+)factorization ['0xa7', '0xe5640575', '0x1b5f3fe351bb7f46628a97d9c529d2ffa6ad556f06d91e13b8a2a7ad91bc2d20be5c9049c0579067dd9aa85e3e6dc57b0d21b72e8815d71549a0933']
(+)largest_factor_bitlen 0x1d9
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=4)$
(+)factorization ['0x3', '0x29', '0x4dcf', '0x67cc91f', '0x21c6f670e5a789ed3662ade0faf55d27351ee6d531b3456ee0c063f7ab6e851353da56d7e524357110e27e42fca80ccce5e0a31210f6c126ed8b3']
(+)largest_factor_bitlen 0x1d2
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0xb', '0x13', '0x45fa71b59a71d73a9', '0x3bbefb6c54f6a57d878bba5b9892717ab4fffbe3f4fe315e07cd6f919c20754667548ec6eeefb537db6271885c403cc57e8a6145b2e939']
(-)largest_factor_bitlen 0x1b6
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x5
full 0xb
relative 0x2
$\text{torsion_extension}(l=13)$
least 0xa8
full 0xa8
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x48
full 0x48
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x560f2f9f46f87459155b3c6e1cedd9236af63e504e83379ac20f45c1cbaf41dc
factorization ['0x2', '0x2', '0x3', '0x3', '0x3', '0x3', '0x5', '0x29', '0x47', '0x1df', '0x50b', '0x1ebb', '0x394d', '0x17a0b', '0x331c37a1c6f2e813094f3e94891f5822f5c6776828d']
$\text{conductor}(deg=3)$
ratio_sqrt 0x6311cb1a5ecae18e0c3025728efb2ea9a5a74337a281604d11aa93debe4dcc747767e4e54385b54fa323a4bf9fe72f9ef1d6abaf3342b2739e66afd9fc46890f
factorization NO DATA (timed out)
$\text{conductor}(deg=4)$
ratio_sqrt 0x4c5572834dadf06a1a764ec985428209d2ba7ddd7bda2de7ca9ee655197e5cd0610349cc49bb0d1ed099ea52cdd61c9ba86c85f93604dc66844fc4697a6a88c17c0441b36599624462d962277eba68e3f0a156cd5a0b2ecd3f4229789760d988
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x1'], ['0x2', '0x1']]
len 0x2
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x4', '0x3']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x1
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x1
full 0xb
relative 0xb
$\text{isogeny_extension}(l=13)$
least 0xe
full 0xe
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x9
full 0x9
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x14
full 0x14
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x560f2f9f46f87459155b3c6e1cedd9236af63e504e83379ac20f45c1cbaf41dc
trace_factorization ['0x2', '0x2', '0x3', '0x3', '0x3', '0x3', '0x5', '0x29', '0x47', '0x1df', '0x50b', '0x1ebb', '0x394d', '0x17a0b', '0x331c37a1c6f2e813094f3e94891f5822f5c6776828d']
number_of_factors 0xb
$\text{trace_factorization}(deg=2)$
trace 0x560f2f9f46f87459155b3c6e1cedd9236af63e504e83379ac20f45c1cbaf41dc
trace_factorization ['0x2', '0x7', '0xfa82c3984f36b', '0x10931c1559271e6cb84166751a7f10d42b3c7ea4621812a15b8afe4787db3fa688166aed80264a0a644b602681df3de36577e62195836306113']
number_of_factors 0x4
$\text{isogeny_neighbors}(l=2)$
len 0x1
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x10f
expected 0xff
ratio 0.94096
$\text{hamming_x}(weight=2)$
x_coord_count 0xfed5
expected 0xfe80
ratio 0.9987
$\text{hamming_x}(weight=3)$
x_coord_count 0xa89cc8
expected 0xa8ac7f
ratio 1.00036
$\text{square_4p1}()$
p NO DATA (timed out)
order NO DATA (timed out)
$\text{pow_distance}()$
distance 0x560f2f9f46f87459155b3c6e1cedd9236af63e504e83379ac20f45c1cbaf43bc
ratio 1.722229196364211e+77
distance 32 0x4
distance 64 0x4
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x1b7bdedd100dd57c7a98a4c4ff1a81c5ff9783d7d784a420a872240367bd896aafcfd3c8eee9d0d3c2d73e516566d916195a25abb073ca5901a5b41d9b455e2a
$\text{brainpool_overlap}()$
o 0x127f490468e5273795bf48e3e3db704f04dd93d954585c6d4850e60aa1746fa515fcf9ab180e4dc6e6512bbd
$\text{weierstrass}()$
a 0xfd40c57f370da3593e1bf4157c0f8cd948c16e0694bdc642d1e95b75d22517b37f21d69a880dd44dba6cee21664cfe7ae785e303a97c5a07f600846b5e26731
b 0x16cc935fc4396e7fc76308975416ad1aa3a3496b874e7274ce13e9dd0d03ee8b249acbf56751ba7fcf913b748e77587570bedf75f591618e12d42638efd18635