Curve detail

Definition

Name ed-510-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x3eddffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 510
Form Twisted Edwards $ax^2 + y^2 = 1 + dx^2y^2$
Param $a$ 0x3eddfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe
Param $d$ 0x8da1e

Characteristics

Order 0xfb77fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd7ced11e7c2f1abf716df42a6c246080b5fcc20917e59a42c85821cdf36d51b1
Cofactor 0x4
$j$-invariant 0x254391c7d08bafb2322725fd17ea39ef08eb3cb826dbb27f592956b10b874a5fa6b1783affd6e41c2db7740e5e52c82f24393bbc8c2be94770176e8c6e7c0199
Trace $t$ 0xa0c4bb860f4395023a482f564f6e7dfd280cf7dba06996f4de9f78c8324ab93c

Traits

$\text{cofactor}()$
order 0xfb77fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd7ced11e7c2f1abf716df42a6c246080b5fcc20917e59a42c85821cdf36d51b1
cofactor 0x4
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0x3ede000000000000000000000000000000000000000000000000000000000000a0c4bb860f4395023a482f564f6e7dfd280cf7dba06996f4de9f78c8324ab93c
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xf704883ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff697e819741b8fa3fab9db67c70e7f445d36dcd6e2f62a6923e7d43b9baaed374132bdec863be5fea0135b9285eb795f5b1232ee0db9fc82ad4d2f3eb0cb7c614
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x2413c9', '0x1dc0ee48499d', '0xefe38c4591bba956c7b8e7c47ab53f04faa4c91e1e0cb24d3600767393b3db25dafab18c789a78f0d7d02422d917a52275b0e41a8d2ae67']
(-)largest_factor_bitlen 0x1bc
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x1325b', '0x46291cb402ad', '0x7fca02607762f8047388934d802871692aaef1b2346790c861785afda77976a0603a5ec722bc50f64984cb8a60d0f6db9de187265009c153']
(-)largest_factor_bitlen 0x1bf
$\text{kn_factorization}(k=3)$
(+)factorization ['0x1d', '0x3d', '0x1a3f', '0x1b7109', '0x1dd7e1', '0x9054d7b8a6415', '0x939a805eec2e9e0ad71ac8f4564e270b884cfd69b360f775a59c3ba3de67d96992207b12f59d08c3867fc505b452fd8fbf7']
(+)largest_factor_bitlen 0x18c
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=8)$
(+)factorization ['0x7', '0xd', '0xd', '0x17', '0x12b9', '0x53e295', '0xa6d0c0f', '0x287c62ee18f42506a99', '0x77c0f6bb9d5e7e82fca5b9b9317217c0954ae7c8fc0dde741d24f8c7f8ee893a5d8b09b7ad64353cb26056bf00b']
(+)largest_factor_bitlen 0x16b
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x5
full 0xa
relative 0x2
$\text{torsion_extension}(l=13)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x120
full 0x120
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0xa0c4bb860f4395023a482f564f6e7dfd280cf7dba06996f4de9f78c8324ab93c
factorization ['0x2', '0x2', '0x3', '0xb', '0xa7', '0x1ddf573222252d62c1042b2bad35772612de80761b1cad89e4b5703c3d2f9']
$\text{conductor}(deg=3)$
ratio_sqrt 0x2618819741b8fa3fab9db67c70e7f445d36dcd6e2f62a6923e7d43b9baaed374132bdec863be5fea0135b9285eb795f5b1232ee0db9fc82ad4d2f3eb0cb7c611
factorization NO DATA (timed out)
$\text{conductor}(deg=4)$
ratio_sqrt 0xf8e785b7b4edc4d78b02dc3f74bef3c568cbdf3958852d14e454ac07a0a5887c20c42edced258b99464f6935075b464de27e652915ca4b7b63c0c7e0052affe7b91f0806ce77fb26c439cfb425eea70f3a9277c0f3112e38c4338d9719691c8
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement None
complement_bit_length None
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x1'], ['0x2', '0x1']]
len 0x2
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x1
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=13)$
least 0x1
full 0x3
relative 0x3
$\text{isogeny_extension}(l=17)$
least 0x12
full 0x12
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x3
relative 0x3
$\text{trace_factorization}(deg=1)$
trace 0xa0c4bb860f4395023a482f564f6e7dfd280cf7dba06996f4de9f78c8324ab93c
trace_factorization ['0x2', '0x2', '0x3', '0xb', '0xa7', '0x1ddf573222252d62c1042b2bad35772612de80761b1cad89e4b5703c3d2f9']
number_of_factors 0x5
$\text{trace_factorization}(deg=2)$
trace 0xa0c4bb860f4395023a482f564f6e7dfd280cf7dba06996f4de9f78c8324ab93c
trace_factorization ['0x2', '0x7', '0x1b8c64e5', '0x10714562f83d1e5a029a6adbab5dc8267934522bcba4feab8ae8cc7de4b35028496ae9689bc2fe2aa973845f078afda91352527840d445294183313d']
number_of_factors 0x4
$\text{isogeny_neighbors}(l=2)$
len 0x1
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x10d
expected 0xff
ratio 0.94796
$\text{hamming_x}(weight=2)$
x_coord_count 0xfdb8
expected 0xfd81
ratio 0.99915
$\text{hamming_x}(weight=3)$
x_coord_count 0xa7bcfd
expected 0xa7aefe
ratio 0.99967
$\text{square_4p1}()$
p NO DATA (timed out)
order 0x1
$\text{pow_distance}()$
distance 0x122000000000000000000000000000000000000000000000000000000000000a0c4bb860f4395023a482f564f6e7dfd280cf7dba06996f4de9f78c8324ab93c
ratio 55.49655
distance 32 0x4
distance 64 0x4
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x9d18bae4ea391b120b7d58874118615571e04e69ac87bb3f771e2f4b2cb41eef4714aad2e6cd634412cba01bca1919809594d1ba5a39cede888f00cc27caa07
$\text{brainpool_overlap}()$
o -0x109b5a6efcf8ac3da15ae173b596c616a2a902475c26a783fe14b4e11b1ae31b7d63c4114ad08bf13c3d7dc8
$\text{weierstrass}()$
a 0x21340df61e839336a7ed8a76d84c35f5728e8f5bde37462db6ce658e59c22b48479c87aaf51c3aef4fa9f439aea4e9985cfbbcecb33a7aa1f6da27fb8c9c89b
b 0x2e7eced1d865929686f704283a108e9151fac5f6512146c798ff037aa0ea9eea48976bbb6a3e2e70f5074663ebb9417a331a9ca100e3ab3086c3efd3c82cb32b