Curve detail

Definition

Name ed-384-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0xb0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 384
Form Twisted Edwards $ax^2 + y^2 = 1 + dx^2y^2$
Param $a$ 0xb0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe
Param $d$ 0x6f17

Characteristics

Order 0x2c3ffffffffffffffffffffffffffffffffffffffffffffff56d07e24e2749cd9f6b769aec80f6fe06fe4e3a6332489b
Cofactor 0x4
$j$-invariant 0x537206bf00c21d5baee862c54cc66fe15e4e59b2eaed1e5d90aaa82d7ff2aefbc763a4d8773187650d9a1bb40c0374c
Trace $t$ 0x2a4be076c762d8c9825225944dfc2407e406c7167336dd94

Traits

$\text{cofactor}()$
order 0x2c3ffffffffffffffffffffffffffffffffffffffffffffff56d07e24e2749cd9f6b769aec80f6fe06fe4e3a6332489b
cofactor 0x4
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0xb100000000000000000000000000000000000000000000002a4be076c762d8c9825225944dfc2407e406c7167336dd94
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x7a60fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd42fcfc2443d557168aa0a17e8e72c29ab47b5fb09ca197a5b453d832e7f12356f74816deebccc87150b484453238dd94
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=2)$
(+)factorization ['0x5', '0x7', '0xbf', '0x4c7', '0x8be914f', '0x5312f09e0327d3ef2dc224278e8f808408855016be54255fab956eeecbfe338e5f99a894d8426960f3e5']
(+)largest_factor_bitlen 0x14f
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x5', '0x5', '0x3b', '0x7f', '0x133', '0xb9b', '0x27239', '0xba89b', '0x7710ea19', '0x1019dd5869815b410766fb0bad533cebcb1d13c8b9d0acc09ecb98c550e80465af9babd']
(-)largest_factor_bitlen 0x119
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0xd', '0x11', '0x17', '0x301', '0xbded503f4059ab6a3574b4191dafb66766e8a49197a1e41b7c6ff1c1ccbc0dd42162169a2d1f17bfd7fae91bcbd']
(-)largest_factor_bitlen 0x16c
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=6)$
(+)factorization ['0x35', '0x59', '0x61', '0x17f49a6ab33d9', '0x71b69aee593f41', '0x23f8b7e1b66e8aed', '0x65bc381fa6dea69af988e6d08519ad68f1ce8823774cef21969']
(+)largest_factor_bitlen 0xcb
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x13', '0x3b9', '0x1d4c26c33', '0x99108783f70a5a16eb57fe3094343e431b754c75dec526c639407c3d1b96ea736719d9560c215adc62333']
(-)largest_factor_bitlen 0x154
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x30
full 0x30
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x78
full 0x78
relative 0x1
$\text{torsion_extension}(l=13)$
least 0xc
full 0xd
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x120
full 0x120
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x2a4be076c762d8c9825225944dfc2407e406c7167336dd94
factorization ['0x2', '0x2', '0x5', '0x13', '0x371b', '0x16ed7', '0x16cf36d6c5e221', '0x40ccc2c379c1e40d23dbf9c27']
$\text{conductor}(deg=3)$
ratio_sqrt 0xaa0303dbbc2aa8e9755f5e81718d3d654b84a04f635e685a4bac27cd180edca908b7e9211433378eaf4b7bbacdc7226f
factorization ['0x17d371', '0x722b4f9116dc2c77b2a5a1c46d030d6398b72898001e2839a11c2e253c96db5b07b1c4818316255ce87b735a3df']
$\text{conductor}(deg=4)$
ratio_sqrt 0x395558c7d3488126d3c6ac8ba1c68b6b9267da4644440520c771fba9d6b544a10d97e4b47283f91ceeedce2e578433c03a932a8b3c350a70cc438ad5544c9cacc6c01f908d0cdd98
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement None
complement_bit_length None
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x1'], ['0x2', '0x1']]
len 0x2
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x2', '0x6']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x1
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x1
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=7)$
least 0x8
full 0x8
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0xc
full 0xc
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x1
full 0xd
relative 0xd
$\text{isogeny_extension}(l=17)$
least 0x12
full 0x12
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x2
relative 0x2
$\text{trace_factorization}(deg=1)$
trace 0x2a4be076c762d8c9825225944dfc2407e406c7167336dd94
trace_factorization ['0x2', '0x2', '0x5', '0x13', '0x371b', '0x16ed7', '0x16cf36d6c5e221', '0x40ccc2c379c1e40d23dbf9c27']
number_of_factors 0x7
$\text{trace_factorization}(deg=2)$
trace 0x2a4be076c762d8c9825225944dfc2407e406c7167336dd94
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x1
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x2
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0xc7
expected 0xc0
ratio 0.96482
$\text{hamming_x}(weight=2)$
x_coord_count 0x8f45
expected 0x8fa0
ratio 1.00248
$\text{hamming_x}(weight=3)$
x_coord_count 0x476deb
expected 0x477040
ratio 1.00013
$\text{square_4p1}()$
p NO DATA (timed out)
order NO DATA (timed out)
$\text{pow_distance}()$
distance 0x30ffffffffffffffffffffffffffffffffffffffffffffffd5b41f89389d27367dadda6bb203dbf81bf938e98cc9226c
ratio 3.61224
distance 32 0xc
distance 64 0x14
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x77dbfcdd7e0a2d47eae442f4ac6111807897694b642e3959decb3dbd505935a955d3d9fda1af593399edb1887ceb9d06
$\text{brainpool_overlap}()$
o -0x2d4caff1f3ec0b8f825772b1b372ec1dbfa4e804430f4724ee302f2
$\text{weierstrass}()$
a 0x91530664469d777cfe9a0ab41ce87b5827b8ab707a33105b99df8884ce0c1c1943b1426f8b2b1582335ba72c9e79939a
b 0x7d07db5ab91e493dc63193445ee8713167256402778c9b9eed5c968c7d2ce660a2189580ef947ab4526ef98bbc6c3b0f