Curve detail

Definition

Name ed-383-mers
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe5b)
Field bits 383
Form Twisted Edwards $ax^2 + y^2 = 1 + dx^2y^2$
Param $a$ 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe5a
Param $d$ 0x7fed6

Characteristics

Order 0x1ffffffffffffffffffffffffffffffffffffffffffffffff1109704e73d9fbbbcd5687c9eaca2206ffebcec1ba7c81d
Cofactor 0x4
$j$-invariant 0x1009575ea00fe1506252fd0824cafd104ba005000a1beeaf41c711e40718045b53f1e0e0739558c580abf51cc070c22f
Trace $t$ 0x3bbda3ec630981110caa5e0d854d777e40050c4f9160dde8

Traits

$\text{cofactor}()$
order 0x1ffffffffffffffffffffffffffffffffffffffffffffffff1109704e73d9fbbbcd5687c9eaca2206ffebcec1ba7c81d
cofactor 0x4
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0x8000000000000000000000000000000000000000000000003bbda3ec630981110caa5e0d854d777e40050c4f9160dc44
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe5a0df0f60a69a77deb493542a6ed5c02c48303c3a17599150239917a9245eb80b83a45a224fb9bcb78cc359537fe5d19e4
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3b', '0x241', '0xb8d', '0x1f39', '0x33c84925b5', '0x17b3f7dc0a3', '0x247b537eebd3d42d00ac3f922f279b7a7da177170f5383e1994e2734579aff3898b']
(-)largest_factor_bitlen 0x10a
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x3', '0x2b', '0xedaf0bd988597', '0xb664bd76315a63d5da363182279f4b0ccb863e87719efa408d40db387399b5f48ee3050ea7dc9703b']
(-)largest_factor_bitlen 0x144
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=4)$
(+)factorization ['0x3', '0xd', '0x74962feb', '0x1cd3a92075f68db34a45c60019bfe741ab87121ec828f6c29aa1f73a212653e32d0e0a2527218a171b860915']
(+)largest_factor_bitlen 0x15d
(-)factorization ['0x5', '0x7', '0xc7', '0x377', '0x16723c91', '0x3df1bfc90d8efd75d6456d84b5544cea432718c933b49109ddabca96cf308f3838011837552eb907ed15']
(-)largest_factor_bitlen 0x14e
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=6)$
(+)factorization ['0x5', '0x11', '0x6b', '0xef', '0x1f3', '0x561760fbb', '0x1f39d5904f', '0x2dd8f2168b', '0x65100260bcde3b55a87ed815aef5d9c5b7a726bcf839b36676a9abb982efdd']
(+)largest_factor_bitlen 0xf7
(-)factorization ['0x1f', '0x474c3d', '0x618e09', '0xe96dc9690ec786e4ead3d71e6b793aacdf92b08922421ab7fabeeea3301cb3ef16bd7320852da7b1d7f5']
(-)largest_factor_bitlen 0x150
$\text{kn_factorization}(k=7)$
(+)factorization ['0x3', '0x3', '0x3', '0x3', '0x3', '0x3', '0x13aa50c4a727ae878cd14b802cf301c17e118eecaf953edbcb46f267725d5ac9c25b1d72289f77a65ecfd128cd38675']
(+)largest_factor_bitlen 0x179
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x13', '0x17', '0x89', '0x14482d', '0x126c252ee76b60dcf54f5ee3531013a15f652c1eab1810201fbcbe07703236094fd88e4ee7b6204e49f8fabd']
(-)largest_factor_bitlen 0x15d
$\text{torsion_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x30
full 0x30
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x5
full 0x5
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x8
full 0x8
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x3bbda3ec630981110caa5e0d854d777e40050c4f9160dde8
factorization ['0x2', '0x2', '0x2', '0x3', '0xd', '0x11', '0x25', '0xed6c4f4f11f80daf7451', '0x1582d7733e02aa32b888b87f']
$\text{conductor}(deg=3)$
ratio_sqrt 0x720f09f596588214b6cabd5912a3fd3b7cfc3c5e8a66eafdc66e856dba147f47c5ba5ddb0464348733ca6ac801a59c1b
factorization ['0x95', '0xf17', '0x145e0077', '0xa33b7ce3dab4487153e5369488d181c1195fb38ffe684933d0a6c0c5064aa7445a0e76e51fada002339f']
$\text{conductor}(deg=4)$
ratio_sqrt 0x387cc7650acfbfdec99b81ab84f5767c1b7b29a0299b96672e8d58458fcababd4ad0368fd8b55b3ba5567d71d0651eae2c2a3566b2524274cf45eda8dfc80759cb350bae36abd8f0
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x1'], ['0x2', '0x1']]
len 0x2
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x1
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x8
full 0x8
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x1
full 0x5
relative 0x5
$\text{isogeny_extension}(l=13)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=19)$
least 0x4
full 0x4
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x3bbda3ec630981110caa5e0d854d777e40050c4f9160dde8
trace_factorization ['0x2', '0x2', '0x2', '0x3', '0xd', '0x11', '0x25', '0xed6c4f4f11f80daf7451', '0x1582d7733e02aa32b888b87f']
number_of_factors 0x7
$\text{trace_factorization}(deg=2)$
trace 0x3bbda3ec630981110caa5e0d854d777e40050c4f9160dde8
trace_factorization NO DATA (timed out)
number_of_factors NO DATA (timed out)
$\text{isogeny_neighbors}(l=2)$
len 0x1
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0xb5
expected 0xbf
ratio 1.05525
$\text{hamming_x}(weight=2)$
x_coord_count 0x8f18
expected 0x8ee0
ratio 0.99847
$\text{hamming_x}(weight=3)$
x_coord_count 0x46dfc4
expected 0x46e15f
ratio 1.00009
$\text{square_4p1}()$
p 0x3
order 0x1
$\text{pow_distance}()$
distance 0x3bbda3ec630981110caa5e0d854d777e40050c4f9160df8c
ratio 1.3449255068404993e+58
distance 32 0xc
distance 64 0xc
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x4d14c61edfdcecc01d3431064d406d80d2687017cf29e1108ab66e87a977968c7c9071ab030eac162f62a7e40bbe8028
$\text{brainpool_overlap}()$
o -0x3069e34e9d026d6d0ba4783b303128f2d204a9b06b4127ba37a62441
$\text{weierstrass}()$
a 0x16aeb6729c4555b87e08b82bfe58d789b9ea5f9ee6dd7f012c7eadb00e9ba8d451d09b082c80fd3bb86cded90b6f192d
b 0x5747624fc9811b1d1a40210f8201c3fafe85a6ec23ae069343153d6e110b5842c0278560589181d5d79decc1a15b362d