Curve detail

Definition

Name ed-382-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x3ffaffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 382
Form Twisted Edwards $ax^2 + y^2 = 1 + dx^2y^2$
Param $a$ 0x3ffafffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe
Param $d$ 0xaf381

Characteristics

Order 0xffebfffffffffffffffffffffffffffffffffffffffffffd31afaa1520dc177d8c1605c481e068269880369e5f3fa61
Cofactor 0x4
$j$-invariant 0xca7a7e821e9e780fec8f382519f34ac2d92b9c4ef1a36566c23ecad8a420be99872735008cbd0065cda4b356be6cc11
Trace $t$ 0xb394157ab7c8fa209cfa7e8edf87e5f659dff2586830167c

Traits

$\text{cofactor}()$
order 0xffebfffffffffffffffffffffffffffffffffffffffffffd31afaa1520dc177d8c1605c481e068269880369e5f3fa61
cofactor 0x4
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0x3ffb00000000000000000000000000000000000000000000b394157ab7c8fa209cfa7e8edf87e5f659dff2586830167c
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xffd8018ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7e0c6bb274b4eb2579c482d74115b0a8a0ab3028a1b59d636c4eb45d254f653915f2122b974f453c1a01008d30798c14
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x3', '0x200f5', '0x3e8bd', '0x2b904d70f7ca2ba9d1d58bbd04b1399607122d296b75a7658544cedf5268e6d84a8e2ff5c13f1ff879569b7']
(+)largest_factor_bitlen 0x15a
(-)factorization ['0x7', '0x7', '0x17', '0x8b', '0x143b', '0x187d', '0x28d8f87', '0x2e5108805e3e9', '0x1df1e270e35487147ab05edb2115497bdf18e863b3b34cf92ec8488cbc55b4f737f']
(-)largest_factor_bitlen 0x109
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization ['0xd', '0x1e31e02ee688b8b1e3', '0x7d2deac67aa6431cca234af3b23e947d4884ac98678a2de018f7e34c6bf08aea4e9f463e041b4b']
(+)largest_factor_bitlen 0x137
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x11', '0x4b75f5', '0x4d2e7b93149', '0xa9656ac168d9f084e2ec811cfd0183021cd3fb6882620591f9d6ddaacb0fe2d7bc9e6336869ba2b']
(-)largest_factor_bitlen 0x13c
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization ['0x3', '0x5', '0x10d', '0xa7ab', '0xb60bc2ebbd', '0x8ce744ba9b39a1', '0x6ed7dec03ba837dbf1041555c625022a338ac459492d5f6eb026ee27552dfcc281']
(+)largest_factor_bitlen 0x107
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=8)$
(+)factorization ['0x1421', '0x3c11', '0x5419', '0x98efb1f', '0x22837f1c22678672bc6ec74255fcd0ce1a088d30a78b5399c35f72b716007327cc116176ad60cb47']
(+)largest_factor_bitlen 0x13e
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{torsion_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=13)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x120
full 0x120
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0xb394157ab7c8fa209cfa7e8edf87e5f659dff2586830167c
factorization ['0x2', '0x2', '0x3', '0xd', '0x13', '0x21411ecf9', '0x7766993e85bc4a197458b969cd01b811a978b']
$\text{conductor}(deg=3)$
ratio_sqrt 0x3dfd6bb274b4eb2579c482d74115b0a8a0ab3028a1b59d636c4eb45d254f653915f2122b974f453c1a01008d30798c11
factorization ['0x377', '0x935', '0x33346c489951c0fd', '0x9b710dbfb9e722f6bf564f5f976bc3166dc1b3d463436c979481f2de7932fdf7ed436ebd717']
$\text{conductor}(deg=4)$
ratio_sqrt 0x1657576b6aae56f93954b55ef16c1a932af91f9f6ed86534e28189eefec726c747f27ad4b5003b5b0fa3e5e890a2c15a0bb1fa8da849f0caa5f707431862d03056df7907fb69b48
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x2
complement_bit_length 0x2
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order 0xffebfffffffffffffffffffffffffffffffffffffffffffd31afaa1520dc177d8c1605c481e068269880369e5f3fa60
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0xffebfffffffffffffffffffffffffffffffffffffffffffd31afaa1520dc177d8c1605c481e068269880369e5f3fa60
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0x3ffaffffffffffffffffffffffffffffffffffffffffffff4c6bea85483705df6305817120781a09a6200da797cfe98
complement_bit_length 0x4
$\text{small_prime_order}(l=11)$
order 0x7ff5fffffffffffffffffffffffffffffffffffffffffffe98d7d50a906e0bbec60b02e240f034134c401b4f2f9fd30
complement_bit_length 0x3
$\text{small_prime_order}(l=13)$
order 0x3ffaffffffffffffffffffffffffffffffffffffffffffff4c6bea85483705df6305817120781a09a6200da797cfe98
complement_bit_length 0x4
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x1'], ['0x2', '0x1']]
len 0x2
$\text{division_polynomials}(l=3)$
factorization [['0x2', '0x2']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x1
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=3)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0xc
full 0xc
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=17)$
least 0x12
full 0x12
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x2
relative 0x2
$\text{trace_factorization}(deg=1)$
trace 0xb394157ab7c8fa209cfa7e8edf87e5f659dff2586830167c
trace_factorization ['0x2', '0x2', '0x3', '0xd', '0x13', '0x21411ecf9', '0x7766993e85bc4a197458b969cd01b811a978b']
number_of_factors 0x6
$\text{trace_factorization}(deg=2)$
trace 0xb394157ab7c8fa209cfa7e8edf87e5f659dff2586830167c
trace_factorization ['0x2', '0x7', '0x2b3', '0x33ad', '0x2d65bcbd', '0x4b91803728b', '0x4fc2aad9bc1d1d63ac63aea614ff695317ad323e5dab991e30f6f6ab5e58d6b62cc9e9']
number_of_factors 0x7
$\text{isogeny_neighbors}(l=2)$
len 0x1
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0xba
expected 0xbf
ratio 1.02688
$\text{hamming_x}(weight=2)$
x_coord_count 0x8db7
expected 0x8e21
ratio 1.00292
$\text{hamming_x}(weight=3)$
x_coord_count 0x464d39
expected 0x46533e
ratio 1.00033
$\text{square_4p1}()$
p NO DATA (timed out)
order 0x7
$\text{pow_distance}()$
distance 0x500000000000000000000000000000000000000000000b394157ab7c8fa209cfa7e8edf87e5f659dff2586830167c
ratio 3275.8
distance 32 0x4
distance 64 0x4
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x116c8aa74dcdaa371ede1d3f81718197762145173b08ad4bdd1a56d09835d2bcc020b41cd1462a0daec7c30adf9cdbd8
$\text{brainpool_overlap}()$
o 0x1c4a5ad155e2299428c6b167e6fe42b29aff45c99a63e17ec456bfcb
$\text{weierstrass}()$
a 0x1c91cabc91750134dc649eab481e7be3c0af2f189cacfc7d19db091c214137d9763b53c668ed610857dff998c3aab8a4
b 0x62a1abc3f8df87f87a86718f3d1113cdee1b3ebd7c1819ff53f8d93bf6688bdbb0a6c618d9fbc2b1fd0dd232ed3140