Curve detail

Definition

Name ed-256-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0xffa7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 256
Form Twisted Edwards $ax^2 + y^2 = 1 + dx^2y^2$
Param $a$ 0xffa7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe
Param $d$ 0x350a

Characteristics

Order 0x3fe9ffffffffffffffffffffffffffffb154bbafb86733c966d92eded8ec7bab
Cofactor 0x4
$j$-invariant 0x518d79145010414d302bdda036cde5e5ba872b130a5dcf09e8ee5efbf18f09b8
Trace $t$ 0x13aad11411e6330da649b44849c4e1154
Embedding degree $k$ 0x3fe9ffffffffffffffffffffffffffffb154bbafb86733c966d92eded8ec7baa
CM discriminant -0x9ef4bf2afb91f8dfa6e3fafa97647fec3e69b0aef222804896c8911cc3e8ef1b

Traits

$\text{cofactor}()$
order 0x3fe9ffffffffffffffffffffffffffffb154bbafb86733c966d92eded8ec7bab
cofactor 0x4
$\text{discriminant}()$
cm_disc -0x9ef4bf2afb91f8dfa6e3fafa97647fec3e69b0aef222804896c8911cc3e8ef1b
factorization ['0x2', '0x2', '0x71', '0xf43', '0x10fb5', '0xef03311f', '0x17cfd71b644129d26145a7299e39c167cf8d72c72b9747cb']
max_conductor 0x2
$\text{twist_order}(deg=1)$
twist_cardinality 0xffa800000000000000000000000000013aad11411e6330da649b44849c4e1154
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xff501e3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffd842d035411b81c8164701415a26e004f06593d443775fedda4ddbb8cf05c4394
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x13', '0xad', '0x1070b', '0x14dca63a3', '0x4f43846c4c829548fc244e9c7695d9391bc16fdcf1594cc6f']
(-)largest_factor_bitlen 0xc3
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x53', '0x6290f6bf3a9a3784a062b2e43dafcea6148f0299c91a8761c6b4b7517fe1e6d']
(-)largest_factor_bitlen 0xfb
$\text{kn_factorization}(k=3)$
(+)factorization ['0x1d', '0x15091', '0x12422d97d', '0x1652d7a075', '0xca270e1c60fa63eec5550a3d988579d138c29739d9']
(+)largest_factor_bitlen 0xa8
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x5', '0x8909', '0x2a61f', '0x301484c8c7e98b6a312f457634a19ff737677e52eaddc6e0d1a70547']
(-)largest_factor_bitlen 0xde
$\text{kn_factorization}(k=5)$
(+)factorization ['0x3', '0x2f', '0x44153', '0x9af054d', '0x99d6c800b', '0x47a6c98b289b9', '0x194d86e32302b49', '0xd3c0aaa423bf2f45']
(+)largest_factor_bitlen 0x40
(-)factorization ['0xff70f7', '0x50113c715e73bef9bf389856157100e013dce3b19ab7abc528bb29915bd']
(-)largest_factor_bitlen 0xeb
$\text{kn_factorization}(k=6)$
(+)factorization ['0x5', '0x5', '0x17', '0x67', '0x137', '0x12631b22d765', '0xde4940a09e4e1e0e02b', '0x57837cd1e173e3542f815dc950721']
(+)largest_factor_bitlen 0x73
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization ['0x11', '0x133', '0x338b9', '0x773839d3', '0x3a829a699db55a7d3281cf84b609ea138e5520e66a01605fe5']
(+)largest_factor_bitlen 0xc6
(-)factorization ['0x3', '0x3', '0x19f85', '0x109093', '0x11d7a77', '0x6a1c8bde0f6c4a98a4164d0f06aa4862ba357b9a733950d63']
(-)largest_factor_bitlen 0xc3
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x25', '0x71', '0x191', '0x1aa623563a6bdef227491259af97ed82f779d1bed6a51503190a83e4b02f']
(+)largest_factor_bitlen 0xed
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x28
full 0x28
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x38
full 0x38
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x8
full 0x10
relative 0x2
$\text{conductor}(deg=2)$
ratio_sqrt 0x13aad11411e6330da649b44849c4e1154
factorization ['0x2', '0x2', '0x7', '0x3b3', '0x827', '0xdb67', '0x6f50847245f6adc29d4501']
$\text{conductor}(deg=3)$
ratio_sqrt 0x8325035411b81c8164701415a26e004f06593d443775fedda4ddbb8cf05c4391
factorization NO DATA (timed out)
$\text{conductor}(deg=4)$
ratio_sqrt 0x990cd6d401455e1ef1fd7bfb96475befef842246518172ef6ef18bea57910adc02b216538249ac5fc375053972c12218
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper 0x2c6357fbe3accfe956e9dd9c119b371ab0
lower 0xd54034
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order 0x3fe9ffffffffffffffffffffffffffffb154bbafb86733c966d92eded8ec7baa
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0x1ff4ffffffffffffffffffffffffffffd8aa5dd7dc3399e4b36c976f6c763dd5
complement_bit_length 0x3
$\text{small_prime_order}(l=7)$
order 0x3fe9ffffffffffffffffffffffffffffb154bbafb86733c966d92eded8ec7baa
complement_bit_length 0x2
$\text{small_prime_order}(l=11)$
order 0x442ccccccccccccccccccccccccccccc78e2ea5508f69da3a0e7a9763cb7fb6
complement_bit_length 0x5
$\text{small_prime_order}(l=13)$
order 0x1ff4ffffffffffffffffffffffffffffd8aa5dd7dc3399e4b36c976f6c763dd5
complement_bit_length 0x3
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x1'], ['0x2', '0x1']]
len 0x2
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x1
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0xe
full 0xe
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x10
relative 0x10
$\text{isogeny_extension}(l=19)$
least 0xa
full 0xa
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x13aad11411e6330da649b44849c4e1154
trace_factorization ['0x2', '0x2', '0x7', '0x3b3', '0x827', '0xdb67', '0x6f50847245f6adc29d4501']
number_of_factors 0x6
$\text{trace_factorization}(deg=2)$
trace 0x13aad11411e6330da649b44849c4e1154
trace_factorization ['0x2', '0x3', '0x3', '0xb', '0x161', '0x6a1', '0x119caac9e48600cdcd855ac5ed5f0bbb71fa915bbfd9f4cc857b2ebd1d']
number_of_factors 0x6
$\text{isogeny_neighbors}(l=2)$
len 0x1
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x77
expected 0x80
ratio 1.07563
$\text{hamming_x}(weight=2)$
x_coord_count 0x3fe4
expected 0x3fc0
ratio 0.9978
$\text{hamming_x}(weight=3)$
x_coord_count 0x15205b
expected 0x151580
ratio 0.99799
$\text{square_4p1}()$
p 0x1
order 0x1
$\text{pow_distance}()$
distance 0x5800000000000000000000000000013aad11411e6330da649b44849c4e1154
ratio 743.72727
distance 32 0xc
distance 64 0x14
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0xefe0c841e3ef76e32aa751d4ce5413a0dc21292f1a5a8c984de2a6d9ad6b03ff
$\text{brainpool_overlap}()$
o -0xa5cc80f39ec7949ba31f74d1
$\text{weierstrass}()$
a 0x46f46e898d76fdeb3e1c847d22da305ea66abef15087e591602e22654cdc0183
b 0xf6546684fef5b700effb7654871f4eb20bf3c09a23f76395492eec0c94ad9ee2