Curve detail

Definition

Name ed-255-mers
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd03)
Field bits 255
Form Twisted Edwards $ax^2 + y^2 = 1 + dx^2y^2$
Param $a$ 0x7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd02
Param $d$ 0xea97

Characteristics

Order 0x1fffffffffffffffffffffffffffffffdcf1a785eda6832eac49d1ed0436eb75
Cofactor 0x4
$j$-invariant 0x5f27924db0ae3c434896c8273161414babc5f329356c0303474178e595c90c31
Trace $t$ 0x8c3961e84965f3454ed8b84bef244f30
Embedding degree $k$ 0x1fffffffffffffffffffffffffffffffdcf1a785eda6832eac49d1ed0436eb74
CM discriminant -0x6ccc4c034c357d085f2dc64d1654eff361611a1f206b5113bb9ff237808052c3

Traits

$\text{cofactor}()$
order 0x1fffffffffffffffffffffffffffffffdcf1a785eda6832eac49d1ed0436eb75
cofactor 0x4
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0x800000000000000000000000000000008c3961e84965f3454ed8b84bef244c34
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x3ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd024ccecff2cf2a0bde8348e6cba6ac40327a7b97837e52bbb111803721fe079d04
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x7', '0x1d', '0x91b64ef2a7', '0x11b983ea795c5f89ce89e5a4322422baab4344ec38d08416fb009']
(+)largest_factor_bitlen 0xd1
(-)factorization ['0x3', '0x7c3', '0xceaa8599', '0x1b2c5f6bec7ebadc783984b', '0x40267959be22330b2cb0146bc43a0f9']
(-)largest_factor_bitlen 0x7b
$\text{kn_factorization}(k=2)$
(+)factorization ['0x3', '0x5', '0x5', '0xd', '0x191', '0x1af', '0x593', '0x298f7', '0x148a3d95', '0x15f08f16bbf67f6f281be0e38541e36ab51f21a8d321']
(+)largest_factor_bitlen 0xad
(-)factorization ['0xb', '0x2b', '0xbea17', '0xba10cbaa705a56c1eac861a39b1bc061f88b273f722b715119c0df4d9']
(-)largest_factor_bitlen 0xe4
$\text{kn_factorization}(k=3)$
(+)factorization ['0x15cd8e870466e35', '0x24c2200134792eb', '0x7aa8c60b37c355638fa4d144631ee301513b']
(+)largest_factor_bitlen 0x8f
(-)factorization ['0x5', '0x7f', '0x9acf3809acf3809acf3809acf3809ace8e71a0f7fe4f13d47d90aa93a1e501']
(-)largest_factor_bitlen 0xf8
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x3', '0x85fd', '0x6cb1587465199d0493a1a8faa7c9980a5e4a621d8c6c42b97c011a84e523']
(-)largest_factor_bitlen 0xef
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=6)$
(+)factorization ['0x2a5', '0x6fb', '0x1485d', '0x11463b', '0x1e0ace4d135f9c04b3212dce9b1ef28f19689d9fd6454b19f31']
(+)largest_factor_bitlen 0xc9
(-)factorization ['0x7', '0x4a9315e3ad6dc15', '0x178a0be019a86dd29357238f58e9209d04290ffcc6fc04fa8d']
(-)largest_factor_bitlen 0xc5
$\text{kn_factorization}(k=7)$
(+)factorization ['0x5', '0x95', '0x95', '0x210fccbf3898b51eb2a6fb9eda80e269c5ee902ce7f7365e33de858effcf1']
(+)largest_factor_bitlen 0xf2
(-)factorization ['0x3', '0xa2d966073de7b5c4ae75', '0x1d58182ca248dd21ef20007546bcf5ac20bcb61486e15']
(-)largest_factor_bitlen 0xb1
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x7', '0x25', '0x61', '0x161', '0x142e1', '0x4b4ff4caa9', '0x106829421a8aa3', '0x6a126bce61a6db2fa306ca9f307825bb']
(+)largest_factor_bitlen 0x7f
(-)factorization ['0x5', '0x11', '0x11', '0x8dd', '0x95b7', '0x10021d', '0x22fb0fe673bc33f32bb58278b40891f9d48939079d381278abd']
(-)largest_factor_bitlen 0xca
$\text{torsion_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x10
full 0x10
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x3c
full 0x3c
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x54
full 0x54
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x90
full 0x90
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x8c3961e84965f3454ed8b84bef244f30
factorization ['0x2', '0x2', '0x2', '0x2', '0x14a0a1', '0x1fd332d0f9', '0x36aebba891ecda96b']
$\text{conductor}(deg=3)$
ratio_sqrt 0x3331300d30d5f4217cb719345953bfcd8584687c81ad444eee7fc8de02015403
factorization ['0x20e3', '0x1bf23', '0x8a0f6577a5', '0x1a70d5e704f74ddee7c6d8bc129123887a781266b55680f']
$\text{conductor}(deg=4)$
ratio_sqrt 0x622710c324cdcffeeb3f443cd383a8bd32a7be4581c231c2113a40a564084681cf44a9de63b30bcb63b8bbd4c7180b20
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x1'], ['0x2', '0x1']]
len 0x2
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x1
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x8
full 0x8
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x7
full 0x7
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x9
full 0x9
relative 0x1
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x12
relative 0x12
$\text{trace_factorization}(deg=1)$
trace 0x8c3961e84965f3454ed8b84bef244f30
trace_factorization ['0x2', '0x2', '0x2', '0x2', '0x14a0a1', '0x1fd332d0f9', '0x36aebba891ecda96b']
number_of_factors 0x4
$\text{trace_factorization}(deg=2)$
trace 0x8c3961e84965f3454ed8b84bef244f30
trace_factorization ['0x2', '0x3', '0x8b', '0x217f49', '0x23dd2dd7c9b', '0x20a4e94f9ccd522ab196d', '0x5beaf8674f48155804a9405975']
number_of_factors 0x7
$\text{isogeny_neighbors}(l=2)$
len 0x1
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x8a
expected 0x7f
ratio 0.92029
$\text{hamming_x}(weight=2)$
x_coord_count 0x3f31
expected 0x3f40
ratio 1.00093
$\text{hamming_x}(weight=3)$
x_coord_count 0x14da50
expected 0x14d63f
ratio 0.99924
$\text{square_4p1}()$
p 0x1
order 0x1
$\text{pow_distance}()$
distance 0x8c3961e84965f3454ed8b84bef24522c
ratio 3.106179848792591e+38
distance 32 0xc
distance 64 0x14
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0x6d2b5d6360297bb13425013cbf1286500b031abdb4129ecc2938238b1c51909b
$\text{brainpool_overlap}()$
o -0x369356bece4e3b8c063269db
$\text{weierstrass}()$
a 0x81c37095ee5056370f1702ce15f56dd94742a80137215bab3b6bf92a4baa236
b 0x4a056c798204fb1eaaed0c11cf237bad7172514b4d2cc4dfd966cb2d64d2405b