Curve detail

Definition

Name ed-254-mont
Category nums
Description Original nums curve from https://eprint.iacr.org/2014/130.pdf
Field Prime (0x3f80ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
Field bits 254
Form Twisted Edwards $ax^2 + y^2 = 1 + dx^2y^2$
Param $a$ 0x3f80fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe
Param $d$ 0x367b

Characteristics

Order 0xfe03fffffffffffffffffffffffffffeb95306c8bd62fb0eaf3d3fec46e98c7
Cofactor 0x4
$j$-invariant 0x135d79329e6c7840748ca096d3644e5e5d2d035a88caa72ace76de9395aae67e
Trace $t$ 0x51ab3e4dd0a7413c5430b004ee459ce4
Embedding degree $k$ 0xfe03fffffffffffffffffffffffffffeb95306c8bd62fb0eaf3d3fec46e98c6
CM discriminant -0x38fd8c019db5e8239e76824dd27c2d3447010c3f833f3715e0b5058e873c553b

Traits

$\text{cofactor}()$
order 0xfe03fffffffffffffffffffffffffffeb95306c8bd62fb0eaf3d3fec46e98c7
cofactor 0x4
$\text{discriminant}()$
cm_disc -0x38fd8c019db5e8239e76824dd27c2d3447010c3f833f3715e0b5058e873c553b
factorization ['0x2', '0x2', '0x67', '0x13f9', '0x15230350c2d', '0x4f6988719eb215207', '0x114e659212580ee93ebb8a2c058a41bcf']
max_conductor 0x2
$\text{twist_order}(deg=1)$
twist_cardinality 0x3f81000000000000000000000000000051ab3e4dd0a7413c5430b004ee459ce4
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfc0bf00ffffffffffffffffffffffffffffffffffffffffffffffffffffffff1c09cff989285f718625f6c8b60f4b2ee3fbcf01f30323a87d2be9c5e30eab14
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x3', '0x13', '0x13', '0x25', '0x130ab31', '0x9bc26b83f83', '0xa2780bba8aee85', '0x1409b937c071057', '0xb4760775d64c5e3']
(+)largest_factor_bitlen 0x3c
(-)factorization ['0x61', '0x61', '0x690b', '0xc0c972917', '0x1a0e1cbd23', '0x2378c8829f5499', '0x18c7e434be9df3aa68ad8ec165']
(-)largest_factor_bitlen 0x65
$\text{kn_factorization}(k=2)$
(+)factorization ['0x7', '0x6d', '0x6d', '0x2d7', '0x70557c0b', '0x74c9078167', '0x8d8d3ed5794a9', '0x13e65eeac1aaa9f0fdb62947730d']
(+)largest_factor_bitlen 0x6d
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization ['0x5', '0x7d3', '0x1f536bc581f', '0xc7dde6ebc2bc19102b473385', '0x32f94a439cc2e52e2c87c98bed1']
(+)largest_factor_bitlen 0x6a
(-)factorization ['0x3637', '0xb3609', '0xc0593db', '0x6d5379dcdccb', '0xfa122d405c1ee45cc9b88d671a8683f0f8315']
(-)largest_factor_bitlen 0x94
$\text{kn_factorization}(k=4)$
(+)factorization ['0x3', '0x3', '0x2f', '0x3d', '0x4f', '0x295', '0x329b1f5963236fbf5550e10d1f4326182e178b739d750026b8dc8a729']
(+)largest_factor_bitlen 0xe2
(-)factorization ['0x49', '0x9d', '0x1475', '0x34741', '0x15a87e14a8bcf18fdf34d530b3c719d35901a9981a5b51401231f7']
(-)largest_factor_bitlen 0xd5
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x3', '0x7', '0x8a13f', '0x770426d4f', '0xf051a09a5eeb1a393358f7', '0x15692647a517c5660d3ffd86c563']
(-)largest_factor_bitlen 0x6d
$\text{kn_factorization}(k=6)$
(+)factorization ['0x71', '0x3235', '0x7a606a7', '0x23f74111b1c03d5ac681800bbf56f544eddd40f87d0d4e502d203']
(+)largest_factor_bitlen 0xd2
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization ['0x3', '0xad', '0x1627d', '0x2bccf', '0x9d300d', '0x48aa4babcb', '0x35440e2f26715f', '0x63b0e1b25aef044360d1352f1']
(+)largest_factor_bitlen 0x63
(-)factorization ['0x5', '0x19d3d5', '0x32cff78353', '0x1157bc4df62c68faf07bcffdaa3b62efbcd646d48a2916aa69']
(-)largest_factor_bitlen 0xc5
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=7)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=11)$
least 0xf
full 0xf
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x10
full 0x10
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x51ab3e4dd0a7413c5430b004ee459ce4
factorization ['0x2', '0x2', '0x7', '0xd', '0xd', '0xeeb89f', '0x2214445', '0x23978b76981e89ea5']
$\text{conductor}(deg=3)$
ratio_sqrt 0x2573300676d7a08e79da093749f0b4d11c0430fe0cfcdc5782d4163a1cf154ef
factorization ['0x5', '0xb', '0xc5', '0x565', '0x135862316b5b59', '0x6e6897aa40ef7b', '0xe35901f75481bff', '0x5aac71252baabf25']
$\text{conductor}(deg=4)$
ratio_sqrt 0x2034cadff347fa99aade1faf2864dcd6f4be231e805f777c74e4b332945cb94d63d1de8b5410413229ca531dfed6abf8
factorization ['0x2', '0x2', '0x2', '0x3', '0x7', '0xd', '0xd', '0x3880bb', '0xeeb89f', '0x2214445', '0x2e39bd2310c45', '0x23978b76981e89ea5', '0x1a62e7733c6a079da0a408aaa3b775a20af4cbb420007b']
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper 0x1a6ca0f8cd3da213cb9b12f64afa5984a7
lower 0xd0b9f6
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order 0xfe03fffffffffffffffffffffffffffeb95306c8bd62fb0eaf3d3fec46e98c6
complement_bit_length 0x2
$\text{small_prime_order}(l=5)$
order 0xfe03fffffffffffffffffffffffffffeb95306c8bd62fb0eaf3d3fec46e98c6
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0xfe03fffffffffffffffffffffffffffeb95306c8bd62fb0eaf3d3fec46e98c6
complement_bit_length 0x2
$\text{small_prime_order}(l=11)$
order 0xfe03fffffffffffffffffffffffffffeb95306c8bd62fb0eaf3d3fec46e98c6
complement_bit_length 0x2
$\text{small_prime_order}(l=13)$
order 0xfe03fffffffffffffffffffffffffffeb95306c8bd62fb0eaf3d3fec46e98c6
complement_bit_length 0x2
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x1'], ['0x2', '0x1']]
len 0x2
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x3', '0x4']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x1
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x1
full 0x2
relative 0x2
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0x2
full 0x2
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x8
relative 0x8
$\text{isogeny_extension}(l=19)$
least 0xa
full 0xa
relative 0x1
$\text{trace_factorization}(deg=1)$
trace 0x51ab3e4dd0a7413c5430b004ee459ce4
trace_factorization ['0x2', '0x2', '0x7', '0xd', '0xd', '0xeeb89f', '0x2214445', '0x23978b76981e89ea5']
number_of_factors 0x6
$\text{trace_factorization}(deg=2)$
trace 0x51ab3e4dd0a7413c5430b004ee459ce4
trace_factorization ['0x2', '0x3', '0x3880bb', '0x2e39bd2310c45', '0x1a62e7733c6a079da0a408aaa3b775a20af4cbb420007b']
number_of_factors 0x5
$\text{isogeny_neighbors}(l=2)$
len 0x1
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x75
expected 0x7f
ratio 1.08547
$\text{hamming_x}(weight=2)$
x_coord_count 0x3f1e
expected 0x3ec1
ratio 0.99424
$\text{hamming_x}(weight=3)$
x_coord_count 0x1499a6
expected 0x14977e
ratio 0.99959
$\text{square_4p1}()$
p 0x1
order 0x61
$\text{pow_distance}()$
distance 0x7f000000000000000000000000000051ab3e4dd0a7413c5430b004ee459ce4
ratio 128.00787
distance 32 0x4
distance 64 0x1c
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{x962_invariant}()$
r 0xe896aa254d6afaa793b9c85565242d10b6a5b9f30a58b2bf57bb4a2b80c2c7d
$\text{brainpool_overlap}()$
o -0x13f8ddb9ff6e2ae68e0ad194
$\text{weierstrass}()$
a 0x29fddf37e037052a961d42d02f179143e384c5cb2c350e827acd57a2c7e47162
b 0x202dec3c7a3b828955ef42f60c9f6898decb94ce5d3939e5538dc07cfbd7ebe8