Curve detail

Definition

Name SM2
Category oscca
Field Prime (0xfffffffeffffffffffffffffffffffffffffffff00000000ffffffffffffffff)
Field bits 256
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0xfffffffeffffffffffffffffffffffffffffffff00000000fffffffffffffffc
Param $b$ 0x28e9fa9e9d9f5e344d5a9e4bcf6509a7f39789f515ab8f92ddbcbd414d940e93
Generator $x$ 0x32c4ae2c1f1981195f9904466a39c9948fe30bbff2660be1715a4589334c74c7
Generator $y$ 0xbc3736a2f4f6779c59bdcee36b692153d0a9877cc62a474002df32e52139f0a0

Characteristics

Order 0xfffffffeffffffffffffffffffffffff7203df6b21c6052b53bbf40939d54123
Cofactor 0x1
$j$-invariant 0x4ba049c8e8bc26c28c7f35ae2e383606c73debf7ace2640992a90e9f5b75412e
Trace $t$ 0x8dfc2093de39fad5ac440bf6c62abedd
Embedding degree $k$ 0xfffffffeffffffffffffffffffffffff7203df6b21c6052b53bbf40939d54122
CM discriminant -0x3b1404bc8f5f15293555dcc39830894cc2dfdc6427fbae62a82a40ae2f52f3533

Traits

$\text{cofactor}()$
order 0xfffffffeffffffffffffffffffffffff7203df6b21c6052b53bbf40939d54123
cofactor 0x1
$\text{discriminant}()$
cm_disc NO DATA (timed out)
factorization NO DATA (timed out)
max_conductor NO DATA (timed out)
$\text{twist_order}(deg=1)$
twist_cardinality 0xffffffff0000000000000000000000008dfc2092de39fad6ac440bf6c62abedd
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xfffffffe00000000fffffffffffffffffffffffe00000003fffffffdfffffffc4ebfb4370a0ead6daaa233c47cf76b34d20239bd804519d57d5bf51d0ad0cacd
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x2', '0x61', '0x2135', '0x5f804ed', '0x2703a507', '0x91af075183f6b64ad', '0x9d3725254ba35e7e110369009dfb']
(+)largest_factor_bitlen 0x70
(-)factorization ['0x2', '0x3', '0x1e4f', '0x36e9', '0x543d32e5', '0x13f1f3759051c182b92c3ad803bf3cb6b53f7b1c01a44ac369']
(-)largest_factor_bitlen 0xc5
$\text{kn_factorization}(k=2)$
(+)factorization ['0x3', '0x13', '0xc41', '0x462ba913', '0x2ac9d1e0018d70283cdc4d2bc46aa02ba6ab953ec3499c6f4d125']
(+)largest_factor_bitlen 0xd2
(-)factorization ['0x5', '0xd', '0x35', '0xef', '0xb48b', '0x2b19ff9', '0xbe83d423d', '0x1cd30b03354ef9de571f114554e2b41e102a436e9']
(-)largest_factor_bitlen 0xa1
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization ['0x2', '0x2', '0x2', '0x7', '0x1777', '0x959f3c340a97e62339d7e74e7850508e9398f04fdb24dd00359d7458d92d']
(-)largest_factor_bitlen 0xf0
$\text{kn_factorization}(k=4)$
(+)factorization ['0x7', '0x301', '0x23205b', '0x162e9bfad0e41635cbf02cef211c4fe8b4719099277937a7fd5a8c451']
(+)largest_factor_bitlen 0xe1
(-)factorization ['0x3', '0x3', '0xb', '0x18ad', '0x1d89', '0x3ffb1e9', '0xe898cdee2a5908829d9922369f0a8d9730ed4d635add25b9cd']
(-)largest_factor_bitlen 0xc8
$\text{kn_factorization}(k=5)$
(+)factorization ['0x2', '0x2', '0x2', '0x2', '0x3', '0x3', '0x59', '0x13f7255', '0x147d67dbd8fcb3956f73b39d235fdc366decc93f6f461a8445517d0f']
(+)largest_factor_bitlen 0xdd
(-)factorization ['0x2', '0x1f', '0x1ed913', '0x7a3c525', '0x7db4a0341', '0x2dabc04fb83c3db2a8f1fe5e3694ad4014f108ef237']
(-)largest_factor_bitlen 0xaa
$\text{kn_factorization}(k=6)$
(+)factorization ['0x51b', '0x5ca9f37', '0x33f2932c335d0fe4bce369c66f607539fba3347e8a9d440d7cb6571f']
(+)largest_factor_bitlen 0xde
(-)factorization ['0x11', '0x17d5', '0x9589', '0x1ab2b995', '0x22c3f3ae8cc5', '0x1ca472e0ace15ef7d4ec6b7bc38914d4f8ab98d']
(-)largest_factor_bitlen 0x99
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0xb', '0xd07c1ce5bb', '0x9cdd6a7345895a5', '0x10e6fbe0f7a0ea30803', '0x9a83c0fe308e47e33284d']
(+)largest_factor_bitlen 0x54
(-)factorization ['0x2', '0x2', '0x3', '0x5', '0xe86dbf', '0x20e541e2ec6241fc3e331c80ce397b36b767243ecce6c5bd844725518d']
(-)largest_factor_bitlen 0xe6
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x5', '0x35f', '0x1e5db5', '0x19e8b01', '0x5c8069879', '0x2459d8e3eeb83293e7', '0x100da6148a8028075b3cf298b']
(+)largest_factor_bitlen 0x61
(-)factorization ['0xbfb4ae738dda58b', '0xaaedb81f3e2bb8d6aa831cf1f6989d9e6482eaf3a1d1ded425']
(-)largest_factor_bitlen 0xc8
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x2
full 0x6
relative 0x3
$\text{torsion_extension}(l=11)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=13)$
least 0x38
full 0x38
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x10
full 0x10
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x8dfc2093de39fad5ac440bf6c62abedd
factorization ['0x2ba41', '0x68348a7d', '0x7fe2853008a9820b71a1']
$\text{conductor}(deg=3)$
ratio_sqrt 0xb1404bcbf5f15293555dcc39830894cc2dfdc6457fbae62782a40ae2f52f3536
factorization ['0x2', '0x5', '0x3d', '0x18a5a63', '0x304a25ac006585e23f9dde701a62037eb5d7f6a58c90c289d477bcb9']
$\text{conductor}(deg=4)$
ratio_sqrt 0xf04b1c2baebcc9df1c772fb9cd01321bfefa2758801e125282d0273204e629f9137cbd65f30427473b4afcba6bf044c1
factorization ['0x3', '0xb', '0x6d', '0x95', '0xa075', '0x2ba41', '0x68348a7d', '0x8362b905', '0x112a8057d', '0x4193a1451', '0x7fe2853008a9820b71a1', '0x2573fae0224804d9c6f80198f8e1d571']
$\text{embedding}()$
embedding_degree_complement 0x1
complement_bit_length 0x1
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order 0x55555554ffffffffffffffffffffffffd0abf523b5ecac63c693fc03134715b6
complement_bit_length 0x2
$\text{small_prime_order}(l=3)$
order 0xfffffffeffffffffffffffffffffffff7203df6b21c6052b53bbf40939d54122
complement_bit_length 0x1
$\text{small_prime_order}(l=5)$
order 0x55555554ffffffffffffffffffffffffd0abf523b5ecac63c693fc03134715b6
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0x7fffffff7fffffffffffffffffffffffb901efb590e30295a9ddfa049ceaa091
complement_bit_length 0x2
$\text{small_prime_order}(l=11)$
order 0xfffffffeffffffffffffffffffffffff7203df6b21c6052b53bbf40939d54122
complement_bit_length 0x1
$\text{small_prime_order}(l=13)$
order 0x55555554ffffffffffffffffffffffffd0abf523b5ecac63c693fc03134715b6
complement_bit_length 0x2
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x6', '0x2']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x1
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x6
relative 0x6
$\text{isogeny_extension}(l=11)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=13)$
least 0xe
full 0xe
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x8
relative 0x8
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x13
relative 0x13
$\text{trace_factorization}(deg=1)$
trace 0x8dfc2093de39fad5ac440bf6c62abedd
trace_factorization ['0x2ba41', '0x68348a7d', '0x7fe2853008a9820b71a1']
number_of_factors 0x3
$\text{trace_factorization}(deg=2)$
trace 0x8dfc2093de39fad5ac440bf6c62abedd
trace_factorization ['0x3', '0xb', '0x6d', '0x95', '0xa075', '0x8362b905', '0x112a8057d', '0x4193a1451', '0x2573fae0224804d9c6f80198f8e1d571']
number_of_factors 0x9
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x88
expected 0x80
ratio 0.94118
$\text{hamming_x}(weight=2)$
x_coord_count 0x3fea
expected 0x3fc0
ratio 0.99743
$\text{hamming_x}(weight=3)$
x_coord_count 0x1519aa
expected 0x151580
ratio 0.99923
$\text{square_4p1}()$
p 0x1
order 0x3
$\text{pow_distance}()$
distance 0x10000000000000000000000008dfc2094de39fad4ac440bf6c62abedd
ratio 4294967295.0
distance 32 0x3
distance 64 0x1d
$\text{multiples_x}(k=1)$
Hx 0x32c4ae2c1f1981195f9904466a39c9948fe30bbff2660be1715a4589334c74c7
bits 0xfe
difference 0x2
ratio 0.99219
$\text{multiples_x}(k=2)$
Hx 0xa3721db9207e1c46e24f06ec2d2d4d785617828a72b72f62370952e0572e033
bits 0xfc
difference 0x4
ratio 0.98438
$\text{multiples_x}(k=3)$
Hx 0xc66e16ba1a17ecdeaac388abe7b22de5f2954b1dc326f4e847be1057fb6206c0
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=4)$
Hx 0xcbfed371295fab4c3c5657b79da0b1bacbb34fe577a3ec1c52966d194ac15278
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=5)$
Hx 0x72936d2249f780f2f4a4a5d0fe1155c52284cad00a1bb942be0ccc8dd6e75d52
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=6)$
Hx 0x89ae4b2ce5a9bc4abef06df3010f79ca1a355e6fbd7fe6700452d4ae2545d00f
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=7)$
Hx 0x20aa4df99dfaced12bdd381af34c6c5910918a2f91c4f6953adbe8412399c04b
bits 0xfe
difference 0x2
ratio 0.99219
$\text{multiples_x}(k=8)$
Hx 0xf61cc37fb62855bf4c58d7f3dc1bbddc9c2b25fd266b0c0839c01f60ee9b1886
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=9)$
Hx 0x20b13f360be9fe979282c1bfc956d0236a0488c874c41eee3087f4b6eab37670
bits 0xfe
difference 0x2
ratio 0.99219
$\text{multiples_x}(k=10)$
Hx 0xcc79a380b0351c814820d01c5710f6cc58f77df321ff60c76c4b5ef604e0920b
bits 0x100
difference 0x0
ratio 1.0
$\text{x962_invariant}()$
r 0x7282c84d47c04077f4fb2415dd3dd82a4535db2e642fb7281eef281ed5bee4d7
$\text{brainpool_overlap}()$
o -0x28e9fa9d9d9f5e344d5a9e4f
$\text{weierstrass}()$
a 0xfffffffeffffffffffffffffffffffffffffffff00000000fffffffffffffffc
b 0x28e9fa9e9d9f5e344d5a9e4bcf6509a7f39789f515ab8f92ddbcbd414d940e93