Curve detail

Definition

Name FRP256v1
Category anssi
Field Prime (0xf1fd178c0b3ad58f10126de8ce42435b3961adbcabc8ca6de8fcf353d86e9c03)
Field bits 256
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0xf1fd178c0b3ad58f10126de8ce42435b3961adbcabc8ca6de8fcf353d86e9c00
Param $b$ 0xee353fca5428a9300d4aba754a44c00fdfec0c9ae4b1a1803075ed967b7bb73f
Generator $x$ 0xb6b3d4c356c139eb31183d4749d423958c27d2dcaf98b70164c97a2dd98f5cff
Generator $y$ 0x6142e0f7c8b204911f9271f0f3ecef8c2701c307e8e4c9e183115a1554062cfb
Simulation seed 0x22210330c1f1d5b1cb62bd35a98aa05d4555d04960f21ec2c86cd591e30275a883fef63f34d2653aad9cb76bced4463a4f52b9dabc0f5daf4c632e04f87281b379835a03411f3a1c1f271bd1c05dca421e32a2ba2cca081b427e0b73f810f5506ecce6eae6676e3469804dcb3f5994fec1af568ff78622f2e0102bef13269c0a133b4dfff2d92fdd6313c892b8284a202e3cdb70966cd10a54cde0cd8325e8c3d70bd689b81bb6488823d416719b10238c25d98c654468cc4ec3dd780ab468ab0b7f404a079b22389127c74b6e026156dd1b029bd127f85efbbe46e8a7ca4bbc1b9d6a4f3e6f88c964e33e830e94da15bc0347b893d9f64d59896fa058e107effd7ba4d5a5027e3c37e8a2ff03bc6293a8ff2a5c43092a5e16032a07533574818265a6651689de41c970dab7e9245cc5462173a9a5dcb98002a4afe1110651445105382ee226ee0b325c5b194e20cfe9a972ac74cbd72d5073362ad8c718203a779c605bc14b45f6d1e2343ca980b78e81d2bacee3338347490e966ecbdc2bc16b0d09c0190e5e4da02e22683bb92e6431a41308ef69b95efdf48c2deff92b4ac82b6c134d197c6d8b0f72cfc901b8f68cc62dfdd9ffa59a0f6e098a14e9a669058f8b9c22502fa3f24ad2bead2883635d4dff091c93e8d34d346137b3d5c987d6e150db335dad723d862b33411288952f7fa97bf04b14c88446aca1fb9d19c385c8180a44ba7244b64e37ee569fe8577ddf3a3263fde075c874674f637018d41cb0a4dbc4d72db0d38d50f2dc6cc975e7e21ac78977c21b499e60221d2a9f85107cb24a31b19d5fcafd4ad98400b383fe08c67b28390e30d07813290eecc536396d9c0c6b033186b8b51194eb7e19d0963f8916e86bdebaa88c9cddfa62493815a251b38296205a7266c124e2f2063bc9e5172681b9f344a0715dddef0a80f535c1950a935af4681f422c8172bfff6a78bad30f544a2aaf54cd6806a24cc822a575f3c7b1b90f42c8697a6ae3c41c8276c2944fc53e791873ff22bffaf3215271da62e66cd0afa2783d92b5d81be6780b1376743baa37458569338ec04a8fbfc25f07f2b1c009000fb600023f793d31e5f36595456e44c3cd1ba786326d63f5ca0c619034d47c721dbffbf165f924b0fc979b4b39303f478a1ed1fac027ca6e24737246b9c0a8da35ee57143d292f9e22d5ac4bfc237e5aaf798958d4586db671436f1da3e11eb6aa08f1497481f4cd614d4787e0f24fd9d207e005db85586ef5371138d41818e63327ed57bc1c87f2db9c831988af62fb735e4508dcbf2331020cccae9e2d74287dede097f2ad9e4262a8a78e123ee93516aa7579087518d3d472710628bc15c423e123919806aea3cdd5a7f6893b51d6b3c7ed9a202a5fb8681ba68553283a0d718960f1cb274e48e24c5dd7beb70dbed9edee81eb2a27d510694e482d

Characteristics

Order 0xf1fd178c0b3ad58f10126de8ce42435b53dc67e140d2bf941ffdd459c6d655e1
Cofactor 0x1
$j$-invariant 0x5a6aa07dbd5b82f95fa8af9893561168a1a30f364407907db8a8cd296ebe55e9
Trace $t$ -0x1a7aba249509f5263700e105ee67b9dd
Embedding degree $k$ 0x2854d94201df2397d803125177b5b5e48dfa1150357875435aaa4e0ef6790e50
CM discriminant -0x3c537358acc6e15261ae40aa9283fc9b84ae8425db8d0fb092b2b090f5ef34743

Traits

$\text{cofactor}()$
order 0xf1fd178c0b3ad58f10126de8ce42435b53dc67e140d2bf941ffdd459c6d655e1
cofactor 0x1
$\text{discriminant}()$
cm_disc -0x3c537358acc6e15261ae40aa9283fc9b84ae8425db8d0fb092b2b090f5ef34743
factorization ['0x1a768d1', '0x973d677d15', '0x17a415cd01d', '0x13c67b49d4c14725', '0x21cea32dcc781645fbdf8ff7']
max_conductor 0x1
$\text{twist_order}(deg=1)$
twist_cardinality 0xf1fd178c0b3ad58f10126de8ce42435b1ee6f39816bed547b1fc124dea06e227
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0xe4be808d3a1d6f02543fdc9a38c4bbf9d4a30c76be8054ec6809d66d20b8194a29b09dcc1ed4604fbe958fe70f7ccf44bb0b36b02e790d4147989099d39198cd
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization ['0x2', '0x1d', '0x1a7c8cdb', '0x99f61dcb8948d', '0x430d3f7a465259c0eb138a4de510cfe38d28fe2e6fb']
(+)largest_factor_bitlen 0xab
(-)factorization ['0x2', '0x2', '0x2', '0x2', '0x2', '0x3', '0x11', '0x1353c30b', '0x4ca56721', '0x68f543e235db91c6c1652aace346e97005e0070435d3aff']
(-)largest_factor_bitlen 0xbb
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization ['0x5', '0x9fd', '0x9b0def69219b417e91896031daa4522a2397bccdec62462c2bf75219c46d1']
(-)largest_factor_bitlen 0xf4
$\text{kn_factorization}(k=3)$
(+)factorization ['0x2', '0x2', '0x5', '0x5', '0x1f7', '0x22e9b3', '0x1e3e4eea509', '0xe55343ccae11bc96b7b645b9bdf2f826c7af2a4cc9205']
(+)largest_factor_bitlen 0xb4
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen -
$\text{kn_factorization}(k=4)$
(+)factorization ['0x7', '0xb', '0x534d3', '0x12877353f1', '0x215bfae7c05575fb69e50cb9f5d6996ba4c2b4515eb7b31913']
(+)largest_factor_bitlen 0xc6
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen -
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization ['0x2', '0x2', '0x520a9', '0xe96bc7', '0x12f3a60853', '0x369f17f4530930ea691420c243490bad73ba60cd01cbd']
(-)largest_factor_bitlen 0xb2
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization ['0x13', '0x2b280d659', '0x58384a93407a8b1', '0x523684f57000c9fc723368ec68f3381922beab34f']
(-)largest_factor_bitlen 0xa3
$\text{kn_factorization}(k=7)$
(+)factorization ['0x2', '0x2', '0x2', '0x29', '0x4c781def862d', '0x114a02e699102ae0d0a5076d9fd1cb1292e4a8ff496c081fc431']
(+)largest_factor_bitlen 0xcd
(-)factorization ['0x2', '0x3', '0x5', '0xb', '0x95', '0x26c02e1', '0x5e5140ff974c14337', '0x9e23ccf58bee2699156cd0f17a40608977833d']
(-)largest_factor_bitlen 0x98
$\text{kn_factorization}(k=8)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen -
(-)factorization ['0x133', '0x4cf', '0x61f', '0x36d865c21a12f89942707cbe4d53bd146653fecaf52eeeb691fb212f0d']
(-)largest_factor_bitlen 0xe6
$\text{torsion_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0xc
full 0xc
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x2
full 0x6
relative 0x3
$\text{torsion_extension}(l=11)$
least 0xa
full 0xa
relative 0x1
$\text{torsion_extension}(l=13)$
least 0xa8
full 0xa8
relative 0x1
$\text{torsion_extension}(l=17)$
least 0x8
full 0x10
relative 0x2
$\text{conductor}(deg=2)$
ratio_sqrt 0x1a7aba249509f5263700e105ee67b9dd
factorization ['0x2b', '0x1ee3', '0x7b0a1', '0x2fd5e117', '0x38d506ca638a0eb']
$\text{conductor}(deg=3)$
ratio_sqrt 0xef3feee6aabd9478eaacc0eebd78ffa69ec33927b5769bbf70342f13d5a7733a
factorization ['0x2', '0x5', '0x1f', '0x83', '0x15fb47', '0xb33a51a63', '0x337fdf8b577f', '0x281b869e94570af', '0x31c05e9914aee6db36869']
$\text{conductor}(deg=4)$
ratio_sqrt 0x31c6e7a7d495703ca6d01b30ef854eeb808c714cbfc77e280d6a59109d04fa25a0a598d23b56b8b7a1aa168b11993ca9
factorization ['0x3', '0x3', '0x3', '0x25', '0x2b', '0x4eb', '0x1ee3', '0x7b0a1', '0x2fd5e117', '0x1568413e3d', '0x38d506ca638a0eb', '0x47210f7c4b960ea7', '0x4373f0819be0400425e79d9b14be170c0b3']
$\text{embedding}()$
embedding_degree_complement 0x6
complement_bit_length 0x3
$\text{class_number}()$
upper 0x6e7ecd75285bbd592238abf2b19f1386e0
lower 0x11b4484
$\text{small_prime_order}(l=2)$
order 0x2854d94201df2397d803125177b5b5e48dfa1150357875435aaa4e0ef6790e50
complement_bit_length 0x3
$\text{small_prime_order}(l=3)$
order 0x3c7f45e302ceb563c4049b7a339090d6d4f719f85034afe507ff751671b59578
complement_bit_length 0x3
$\text{small_prime_order}(l=5)$
order 0x50a9b28403be472fb00624a2ef6b6bc91bf422a06af0ea86b5549c1decf21ca0
complement_bit_length 0x2
$\text{small_prime_order}(l=7)$
order 0xf1fd178c0b3ad58f10126de8ce42435b53dc67e140d2bf941ffdd459c6d655e0
complement_bit_length 0x1
$\text{small_prime_order}(l=11)$
order 0xf1fd178c0b3ad58f10126de8ce42435b53dc67e140d2bf941ffdd459c6d655e0
complement_bit_length 0x1
$\text{small_prime_order}(l=13)$
order 0xf1fd178c0b3ad58f10126de8ce42435b53dc67e140d2bf941ffdd459c6d655e0
complement_bit_length 0x1
$\text{division_polynomials}(l=2)$
factorization [['0x3', '0x1']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0x6', '0x2']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x0
depth 0x0
$\text{isogeny_extension}(l=2)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x3
full 0x3
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x1
full 0x6
relative 0x6
$\text{isogeny_extension}(l=11)$
least 0x1
full 0x5
relative 0x5
$\text{isogeny_extension}(l=13)$
least 0xe
full 0xe
relative 0x1
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x10
relative 0x10
$\text{isogeny_extension}(l=19)$
least 0x14
full 0x14
relative 0x1
$\text{trace_factorization}(deg=1)$
trace -0x1a7aba249509f5263700e105ee67b9dd
trace_factorization ['0x2b', '0x1ee3', '0x7b0a1', '0x2fd5e117', '0x38d506ca638a0eb']
number_of_factors 0x5
$\text{trace_factorization}(deg=2)$
trace -0x1a7aba249509f5263700e105ee67b9dd
trace_factorization ['0x3', '0x3', '0x3', '0x25', '0x4eb', '0x1568413e3d', '0x47210f7c4b960ea7', '0x4373f0819be0400425e79d9b14be170c0b3']
number_of_factors 0x6
$\text{isogeny_neighbors}(l=2)$
len 0x0
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x82
expected 0x80
ratio 0.98462
$\text{hamming_x}(weight=2)$
x_coord_count 0x3f65
expected 0x3fc0
ratio 1.00561
$\text{hamming_x}(weight=3)$
x_coord_count 0x1514d0
expected 0x151580
ratio 1.00013
$\text{square_4p1}()$
p 0x1
order 0x3
$\text{pow_distance}()$
distance 0xe02e873f4c52a70efed921731bdbca4ac23981ebf2d406be0022ba63929aa1f
ratio 17.27089
distance 32 0x1
distance 64 0x1f
$\text{multiples_x}(k=1)$
Hx 0xb6b3d4c356c139eb31183d4749d423958c27d2dcaf98b70164c97a2dd98f5cff
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=2)$
Hx 0xa847235b97b15db6ca85669c3e5029dfa100c7b0c1cabc0cdd3794d2770a1946
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=3)$
Hx 0x45b1f819e6d5ebf6c19feb017cbbf059ec5cfb3611c8446ea48c84292f0ebbd
bits 0xfb
difference 0x5
ratio 0.98047
$\text{multiples_x}(k=4)$
Hx 0x78cebe10de3aeecd0154ac0ea69292a7190b9847a81413715a566574a5aa3397
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=5)$
Hx 0xaeede4ac83cb4bdaea5b23318c30b66a5c105196521f14c51930497f49c8d953
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=6)$
Hx 0x308016159cb9fa285c56b7b65181f8ad4adc670b74270d8710ea4783031fe0a6
bits 0xfe
difference 0x2
ratio 0.99219
$\text{multiples_x}(k=7)$
Hx 0xeb9d52556a3e18330c261da3ca87ae3f2937d6b3acf35b577de124841b0b5c43
bits 0x100
difference 0x0
ratio 1.0
$\text{multiples_x}(k=8)$
Hx 0x1e09237b8257b9667e70c774f31e03d2ba4b2c5b0ddfc0c495b4b7310e2842b2
bits 0xfd
difference 0x3
ratio 0.98828
$\text{multiples_x}(k=9)$
Hx 0x6a61e5cd1a646506fced8d8328bce5b756aafe621ecfb9cc7ccf5f4a493267ba
bits 0xff
difference 0x1
ratio 0.99609
$\text{multiples_x}(k=10)$
Hx 0xefa9c112b762451aa4a4ffbb01a22a297f8631c1ebdd0ab38806fa0dc25bd348
bits 0x100
difference 0x0
ratio 1.0
$\text{x962_invariant}()$
r 0xed7449cb1194b8a5907fcc4a3eb534b5f1b735292887cf13a73bdfb73875540
$\text{brainpool_overlap}()$
o -0xc26c755c6b2bb5dc34dc1e75
$\text{weierstrass}()$
a 0xf1fd178c0b3ad58f10126de8ce42435b3961adbcabc8ca6de8fcf353d86e9c00
b 0xee353fca5428a9300d4aba754a44c00fdfec0c9ae4b1a1803075ed967b7bb73f