Curve detail

Definition

Name B-409 (nist/B-409, secg/sect409r1, x962/ansit409r1)
Category nist
Field Binary
Field polynomial $x^{409} + x^{87} + 1$
Field bits 409
Form Weierstrass $y^2 = x^3 + ax + b$
Param $a$ 0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
Param $b$ 0x021a5c2c8ee9feb5c4b9a753b7b476b7fd6422ef1f3dd674761fa99d6ac27c8a9a197b272822f6cd57a55aa4f50ae317b13545f
Generator $x$ 0x15d4860d088ddb3496b0c6064756260441cde4af1771d4db01ffe5b34e59703dc255a868a1180515603aeab60794e54bb7996a7
Generator $y$ 0x061b1cfab6be5f32bbfa78324ed106a7636b9c5a7bd198d0158aa4f5488d08f38514f1fdf4b4f40d2181b3681c364ba0273c706
Simulation seed 0x4099b5a457f9d69f79213d094c4bcd4d4262210b

Characteristics

Order 0x10000000000000000000000000000000000000000000000000001e2aad6a612f33307be5fa47c3c9e052f838164cd37d9a21173
Cofactor 0x2
Trace $t$ -0x3c555ad4c25e6660f7cbf48f8793c0a5f0702c99a6fb34422e5

Traits

$\text{cofactor}()$
order 0x10000000000000000000000000000000000000000000000000001e2aad6a612f33307be5fa47c3c9e052f838164cd37d9a21173
cofactor 0x2
$\text{discriminant}()$
cm_disc None
factorization None
max_conductor None
$\text{twist_order}(deg=1)$
twist_cardinality 0x1fffffffffffffffffffffffffffffffffffffffffffffffffffc3aaa52b3da1999f08340b70786c3f5a0f8fd3665904cbbdd1c
factorization None
$\text{twist_order}(deg=2)$
twist_cardinality 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc0e381f092c9f9c2a50751ce3d057c61a99aa7fe1e0f1e63a674b156e8eb74093d67b900543bc7e10e3047b4c342184cc69a0da
factorization None
$\text{kn_factorization}(k=1)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0xb', '0xb5', '0x425', '0x54b71f77696b4d1950d60621d19cc6f328a89ead3ef9818e09fa04752efe9fd020bf41f0d3a4fcf789268bac0e93b96bd']
(-)largest_factor_bitlen 0x183
$\text{kn_factorization}(k=2)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=3)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=4)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=5)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=6)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{kn_factorization}(k=7)$
(+)factorization NO DATA (timed out)
(+)largest_factor_bitlen NO DATA (timed out)
(-)factorization ['0x3', '0x11', '0x1d', '0x230b', '0x11b3e2856cb58c7f2b14d4b2e152da6d7c4dc7573c6c72cb17c2817ce15f46a1fcd0a955a36399970cfb96dcb3385735ad']
(-)largest_factor_bitlen 0x185
$\text{kn_factorization}(k=8)$
(+)factorization ['0x3', '0x12ac7', '0x545a31d', '0x6653c75', '0x22b23d9d1afde9841c8ce1d65efcfd063ec1fde340da71b0a2a11ff98782737a8322cdca8ab8f5a231242d']
(+)largest_factor_bitlen 0x156
(-)factorization NO DATA (timed out)
(-)largest_factor_bitlen NO DATA (timed out)
$\text{torsion_extension}(l=2)$
least None
full None
relative None
$\text{torsion_extension}(l=3)$
least 0x8
full 0x8
relative 0x1
$\text{torsion_extension}(l=5)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=7)$
least 0x18
full 0x18
relative 0x1
$\text{torsion_extension}(l=11)$
least 0x5
full 0xa
relative 0x2
$\text{torsion_extension}(l=13)$
least 0x2
full 0xc
relative 0x6
$\text{torsion_extension}(l=17)$
least 0x10
full 0x10
relative 0x1
$\text{conductor}(deg=2)$
ratio_sqrt 0x3c555ad4c25e6660f7cbf48f8793c0a5f0702c99a6fb34422e5
factorization ['0x95', '0x137', '0x2d182b', '0x1e467a4d360e1bee93741257567e3ec1527cd06565']
$\text{conductor}(deg=3)$
ratio_sqrt 0x1f1c7e0f6d36063d5af8ae31c2fa839e56655801e1f0e19c598b4ea917148bf6c29846ffabc4381ef1cfb84b3cbde7b33965f27
factorization NO DATA (timed out)
$\text{conductor}(deg=4)$
ratio_sqrt 0xedfb865f08c9acd1f0d7590eab52441a96d1ce64eaa474c9d19a0922a9dc2b5234aaaec96e033fd546c4b055c2ce52f54b85222386bb9a84bad597e6bc2cee32da79c41a0fdc5f171a9824be3
factorization NO DATA (timed out)
$\text{embedding}()$
embedding_degree_complement None
complement_bit_length None
$\text{class_number}()$
upper NO DATA (timed out)
lower NO DATA (timed out)
$\text{small_prime_order}(l=2)$
order None
complement_bit_length None
$\text{small_prime_order}(l=3)$
order None
complement_bit_length None
$\text{small_prime_order}(l=5)$
order None
complement_bit_length None
$\text{small_prime_order}(l=7)$
order None
complement_bit_length None
$\text{small_prime_order}(l=11)$
order None
complement_bit_length None
$\text{small_prime_order}(l=13)$
order None
complement_bit_length None
$\text{division_polynomials}(l=2)$
factorization [['0x1', '0x2']]
len 0x1
$\text{division_polynomials}(l=3)$
factorization [['0x4', '0x1']]
len 0x1
$\text{division_polynomials}(l=5)$
factorization [['0xc', '0x1']]
len 0x1
$\text{volcano}(l=2)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=3)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=5)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=7)$
crater_degree 0x0
depth 0x0
$\text{volcano}(l=11)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=13)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=17)$
crater_degree 0x2
depth 0x0
$\text{volcano}(l=19)$
crater_degree 0x2
depth 0x0
$\text{isogeny_extension}(l=2)$
least None
full None
relative None
$\text{isogeny_extension}(l=3)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=5)$
least 0x6
full 0x6
relative 0x1
$\text{isogeny_extension}(l=7)$
least 0x4
full 0x4
relative 0x1
$\text{isogeny_extension}(l=11)$
least 0x1
full 0xa
relative 0xa
$\text{isogeny_extension}(l=13)$
least 0x1
full 0xc
relative 0xc
$\text{isogeny_extension}(l=17)$
least 0x1
full 0x4
relative 0x4
$\text{isogeny_extension}(l=19)$
least 0x1
full 0x12
relative 0x12
$\text{trace_factorization}(deg=1)$
trace -0x3c555ad4c25e6660f7cbf48f8793c0a5f0702c99a6fb34422e5
trace_factorization ['0x95', '0x137', '0x2d182b', '0x1e467a4d360e1bee93741257567e3ec1527cd06565']
number_of_factors 0x4
$\text{trace_factorization}(deg=2)$
trace -0x3c555ad4c25e6660f7cbf48f8793c0a5f0702c99a6fb34422e5
trace_factorization ['0x3', '0x7', '0x11', '0x9eb', '0x1709', '0x62db10d33f', '0xaa59df6443', '0x1a59a3e8155', '0x1e7121f8d4d7869a9', '0x18a426ee3ea94f59464c73', '0x28e55ef7fabcbdba8bbaf36c549b']
number_of_factors 0xb
$\text{isogeny_neighbors}(l=2)$
len 0x3
$\text{isogeny_neighbors}(l=3)$
len 0x0
$\text{isogeny_neighbors}(l=5)$
len 0x0
$\text{q_torsion}()$
Q_torsion 0x1
$\text{hamming_x}(weight=1)$
x_coord_count 0x199
expected 0xcd
ratio 0.50122
$\text{hamming_x}(weight=2)$
x_coord_count 0x145ec
expected 0xa3c2
ratio 0.50244
$\text{hamming_x}(weight=3)$
x_coord_count 0xacb8bc
expected 0x56ff54
ratio 0.50369
$\text{square_4p1}()$
p NO DATA (timed out)
order NO DATA (timed out)
$\text{pow_distance}()$
distance 0x3c555ad4c25e6660f7cbf48f8793c0a5f0702c99a6fb34422e6
ratio 2.1818814621476744e+62
distance 32 0x6
distance 64 0x1a
$\text{multiples_x}(k=1)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=2)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=3)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=4)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=5)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=6)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=7)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=8)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=9)$
Hx None
bits None
difference None
ratio None
$\text{multiples_x}(k=10)$
Hx None
bits None
difference None
ratio None
$\text{brainpool_overlap}()$
o None
$\text{weierstrass}()$
a None
b None